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Summary

In this dissertation we attempt to approach fluid mechanics problems from a unified

point of view and to combine techniques developed originally for compressible or

incompressible flows into a more general framework. In order to study the viability

of a unified approach, it is necessary to choose a starting formulation, therefore the

choice of variables in the governing equations is crucial. For example, conservative

variables are not suitable for a unified formulation because they result in a singular

limit for incompressible flows. When entropy or pressure primitive variables are used,

then the incompressible limit of the Navier-Stokes equations is well-defined, hence

they are a suitable choice for obtaining a unified formulation. These two sets of

variables are investigated in detail.

Since each set of variables possesses unique properties, the accuracy, stability, robust-

ness, and computational efficiency of a numerical method strongly depend on this

choice.

The numerical discretization is a time-discontinuous Galerkin least-squares finite el-

ement method. An essential part in this algorithm and related methods is the stabi-

lization operator. For compressible flows a stabilization operator in the finite element

discretization is generally required to prevent numerical oscillations in regions with

discontinuities or sharp gradients which are not accurately represented by the com-

putational mesh. For incompressible flows, the concept of a stabilization operator is

also crucial and eliminates the complications of designing elements which satisfy the

inf-sup stability condition. Although very different concerns are present in solving

compressible and incompressible flows which motivate the need of a stabilization op-

erator in the variational formulation, this thesis shows that many ideas developed in

one field can be used in the other field.

The most important ingredient to obtain a unified formulation is the design of a sta-

bilization matrix which is valid for both type of flows. The choice of this matrix is

crucial to ensure stability of the numerical discretization without compromising accu-

racy. Moreover, the stabilization matrix designed for incompressible flows might not

be effective in the compressible flow regime and reversely, the compressible stabiliza-

tion matrix might not be well-defined in the incompressible limit. This dissertation
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presents a new technique to design stabilization matrices that can be used for both

type of flows. The proposed class of stabilization matrices is obtained using dimen-

sional analysis with respect to the flow variables. In the construction of the stabiliza-

tion matrices we used the benefits of both entropy and pressure primitive variables.

The obtained stabilization matrices are well-defined in the incompressible limit for

both entropy and primitive variables and this is considered to be the main result of

this thesis. The proposed class of dimensionally consistent stabilization matrices is

further investigated to enhance stability of the Galerkin least-squares finite element

discretization of the linearized incompressible Navier-Stokes equations and nonlinear

stability in the compressible case. Therefore, we give necessary and sufficient con-

dition on the positive definiteness of the designed stabilization matrix for entropy

variables.

The time-discontinuous Galerkin least-squares finite element discretization results in

a large system of nonlinear algebraic equations. For unsteady problems, a linear-

in-time approximation of the space-time Galerkin least-squares variational equation

is needed. In this thesis we propose a new method to solve the nonlinear algebraic

system and compare the algorithm with the predictor multi-corrector method using

the advection-diffusion equation as a model problem.

The newly designed stabilization matrix is demonstrated for the incompressible Navier-

Stokes equations using some numerical examples. The main emphasis is on the influ-

ence of this stabilization matrix on the accuracy of the numerical discretization. The

numerical examples show that when pressure primitive variables are used, the new

class of stabilization matrices developed in this thesis perform well in stabilizing the

numerical method without degrading accuracy .
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Chapter 1

Introduction

1.1 Motivation

Many applications in fluid dynamics require the solution of the Navier-Stokes equa-

tions in a time-dependent flow domain. Examples can be found in the analysis of

fluid-structure interaction, moving spatial configurations and flows with (internal)

free surfaces. In order to accurately represent the solution of these problems, the

numerical method requires the use of moving and deforming meshes.

Several numerical techniques can deal with deforming meshes, e.g. finite volume

methods, but in this thesis we focus on finite element methods since they provide

an excellent framework for solving the Navier-Stokes equations and make it possible

to efficiently deal with flow domains with a complicated geometry and to adapt the

computational mesh to accurately capture boundary layers, vortical structures and

other detailed flow phenomena.

Fluid flow problems that involve moving and deforming spatial configurations have

been an area of great interest. In particular, arbitrary Lagrangian-Eulerian finite

element techniques have been successfully used to deal with time-dependent fluid flow

problems with changing spatial configurations, see [40] and the references therein. In

[29], [36], [51], space-time techniques have been developed based on a Galerkin least-

squares finite element method with fixed spatial domains and in [20], [37] for fluid

and solid mechanics problems. The idea of the space-time Galerkin least-squares finite

element method for the Navier-Stokes equations was extended in [40] to computations

that involve changing configurations. The variational formulations of these methods

employ the time-discontinuous Galerkin least-squares method, which is also the basis

of our formulation. The time-discontinuous Galerkin least-squares method subdivides

the space-time domain into so-called space-time slabs. The polynomial basis functions

are discontinuous across space-time slab boundaries but continuous inside the space-

time slab. This provides the flexibility to change the computational mesh from one
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Chapter 1. Introduction

space-time slab to another in case of severe deformations and also provides a natural

mechanism for incorporating adaptive remeshing in the formulation.

When applied to advection dominated problems, the Galerkin method, and like-

wise the time-discontinuous Galerkin method, lack stability. Unresolved internal and

boundary layers locally result in severe oscillations in the solution, which pollute the

entire solution. To overcome these difficulties, a least-squares operator is added to the

basic Galerkin formulation. When properly defined, these operators guarantee sta-

bility without compromising accuracy. Stabilized methods will be discussed in great

detail later on in this thesis.

The motivation of this research is the need to understand and predict the dynamic

behavior of risers in waves and current, which is of great importance for the offshore

industry. The risers are situated subsea, and consist of a structure containing pipes,

valves, and connectors linked to the seabed and to a floating or fixed production

platform. The pipes are used to extract oil and gas from the subsea, as illustrated

in Figure 1.1. The riser is exposed to waves and current and its dynamic behavior

and fatigue life is strongly influenced by the flow field surrounding its components, in

particular periodic vortex shedding.

The Galerkin least-squares method, in combination with a suitable stabilization oper-

ator, is an excellent method to accurately compute the periodic shedding of vortices

and, in combination with the space-time formulation, it is well suited for moving

and deforming meshes. For example, in the case of a vibrating cylinder or when

more cylinders move with respect to each other in a riser. The computation of this

Figure 1.1: Riser connected to a floating production at water depth of 1853 m.
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1.1. Motivation

type of flows is, however, non trivial and in this thesis we focus on the mathematical

formulation of Galerkin least-squares methods for the Navier-Stokes equations.

Stabilized methods have been around for some time. They were initially developed

for incompressible flows in [8], and later extended to compressible flows [29], [30],

[32], [33]. In combination with the developments in stabilized methods, several new

space-time formulations were developed and tested for a large range of compressible

and incompressible flow problems, [56], [15] and references therein. Although very

different concerns are present in solving compressible and incompressible flows, there

are several ideas developed in one field that can be used in the other field. Examples

are the concept of an entropy variables formulation of the governing equations and

the Galerkin least-squares method, that have been successfully applied to both types

of flows, [22], [23]. The objective of this work is to approach fluid mechanics from

a more unified point of view and to combine ideas for numerical methods developed

originally for compressible or incompressible flows into a more general framework.

The compressible Navier-Stokes equations in conservative form represent the conser-

vation of mass, momentum and energy. The system of conservation laws must be

closed by adding two equations of state, or equivalently, by determining the funda-

mental equation of the system. Then, all relevant thermodynamic quantities can be

obtained, which is sufficient to construct the flux vectors and coefficient matrices in

the compressible Navier-Stokes equations. The conservative variables are, however,

not suitable for a unified formulation since they result in a singular limit for incom-

pressible flows. In [23], Hauke and Hughes demonstrated that, with the proper choice

of variables, it is possible to obtain a formulation of the Navier-Stokes equations

which is valid for both compressible and incompressible flows. This makes it possible

to obtain a unified discretization valid for both type of flows.

In order to study the viability of a unified approach for compressible and incompress-

ible flows, it is necessary to choose a starting formulation, therefore the choice of

variables in the governing equation is crucial. Since each set of variables possesses

unique properties, the accuracy, stability, robustness and computational efficiency of

the numerical method depend on this choice. For a comparative study of different

sets of variables we refer to the work of Hauke and Hughes [23]. It can be shown that

when entropy or pressure primitive variables are used, then the incompressible limit

of the Navier-Stokes equations is well-defined, therefore, they are a suitable choice for

obtaining a unified formulation. This motivates the use of (physical) entropy variables

as a starting point of our formulation. A detailed description of the entropy variables

can be found in [9], [50], [30], and in several chapters of this thesis.

Another benefit of using entropy variables is that they symmetrize the Navier-Stokes

equations. It is known that symmetric systems and notions of generalized entropy

functions are closely linked and we discuss this link in later chapters of this the-

sis. The symmetric form of the compressible Navier-Stokes equations expresses the

mathematical and physical stability provided by the second law of thermodynamics.
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Chapter 1. Introduction

Entropy production is governed by the second law of thermodynamics and entropy

variables provide a formulation which satisfies the entropy condition. Moreover, the

discrete solution of the Galerkin formulation based on entropy variables automatically

satisfies the Clausius-Duhem inequality, or second law of thermodynamics.

An incompressible fluid is characterized by constant density and therefore, the density

is not a thermodynamic variable. The thermodynamic theory in this approximation

has one less independent variable than for a simple compressible substance. Since

pressure is no longer a thermodynamic but a mechanical variable, there is only one

equation of state for incompressible flows. We are interested in a unified formulation,

and special attention is therefore given to the study of the various thermodynamic

limits. We address the important question of the existence of a general form of the

fundamental equation, such that by taking the incompressible limit, the equation is

well defined and describes an incompressible fluid.

An essential ingredient to obtain a unified formulation, valid for both compressible

and incompressible flows, is provided by the stabilization operator. Compressible flow

equations generally require a stabilization operator in the finite element discretization

to prevent numerical oscillations in regions with discontinuities or sharp gradients

which are not accurately represented on the computational mesh. The concept of

a stabilization operator is also necessary for incompressible flows and eliminates the

complications of designing elements which satisfy the inf-sup stability condition for a

mixed formulation.

In this thesis we will therefore focus on the formulation of stabilization operators,

and in particular the stabilization matrix. The choice of this matrix is crucial to

ensure stability of the numerical discretization but it can also negatively influence

the accuracy of the scheme. In the next section we give an overview of different

aspects of the stabilization operator and the important stabilization parameters in

it. If entropy or pressure primitive variables are used, the same formulation can be

used to compute compressible and incompressible flows. The difficulty to overcome

is, however, to design a stabilization matrix which is valid for both type of flows. The

stabilization matrix designed for incompressible flows might not be effective in the

compressible flow regime and reversely, the compressible stabilization matrix might

not be well-defined in the incompressible limit. There have been earlier attempts to

design stabilization matrices valid for both type of flows in [23] and in [42] using aug-

mented conservation variables. In this thesis we propose a new class of stabilization

matrices for both entropy and primitive variables and show that the incompressible

limit is well-behaved and results in the stabilization matrix designed for incompress-

ible flows. This unified formulation of stabilization matrices is considered to be the

main contribution of this thesis.
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1.2. Overview of stabilized methods

1.2 Overview of stabilized methods

An excellent technique to compute fluid flow problems is provided by stabilized finite

element methods. Although, stabilized methods have been mostly developed in the

context of fluid mechanics, there have also been a number of successful applications of

stabilized methods in structural mechanics. Stabilized finite elements are constructed

by modifying the variational form of a particular problem, such that enhanced numer-

ical stability is achieved without compromising consistency or accuracy. The origins

of stabilized methods can be traced back to the early 80’s when T. J. R. Hughes and

coworkers realized the important origin of the lack of stability of the Galerkin method

for advection-dominated diffusion problems. Stabilized methods were initially devel-

oped for advection-diffusion problems and for incompressible flows in [8], and later

extended to compressible flows, [29], [30], [32] and [33]. In this section we discuss the

key features of stabilized methods using two model problems, the advection-diffusion

equation and the steady state Stokes equations.

1.2.1 Model problems

Model I. Consider the advection-diffusion equation

Lφ = φ,t + a · ∇φ−∇ · (κ∇φ) − f = 0 (1.2.1)

where φ = φ(t, x) is the dependent variable, a scalar-valued function of the spatial

coordinates x ∈ Ω ⊂ Rd and time t ∈ (0, T ). Furthermore, the velocity vector is

denoted by a = a(x), f = f(t, x) is the source function and the diffusivity tensor is

κ = κ(x). We assume for simplicity that κ is isotropic and positive-definite. Therefore,

κ = kI, where I is the identity matrix, and the scalar k = k(x) is positive. The

domain Ω is assumed to be smooth and in addition, we consider a homogeneous

Dirichlet boundary condition

φ(t, x) = 0 on Γ = ∂Ω. (1.2.2)

The Galerkin variational formulation corresponding to (1.2.1-1.2.2) is obtained by

multiplying (1.2.1) by test functions and integrating the equation over the computa-

tional domain:

Find φ ∈ H1
0 (Ω) such that

(Lφ,w) = (φ,t + a · ∇φ,w) + (κ∇φ,∇w) − (f, w) = 0 ∀w ∈ H1
0 (Ω), (1.2.3)

where (·, ·) indicates the inner product in L2(Ω) and H1
0 is the usual Sobolev space

H1
0 (Ω) = {v | v,Dv ∈ L2(Ω), v = 0 on Γ}.
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Chapter 1. Introduction

Model II. The equations for Stokes flow with homogeneous Dirichlet boundary con-

ditions are defined as:

−ν∆u+ ∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on ∂Ω

where u is the velocity, p the pressure, ν the viscosity and f is the external force

acting on the fluid. The mixed variational formulation of the Stokes equations can be

given as follows:

Find (u, p) ∈ H1
0 (Ω) × L2

0(Ω) such that

(∇u,∇w) − (∇ · w, p) = (f, w) ∀w ∈ H1
0 (Ω),

(∇ · u, q) = 0 ∀q ∈ L2
0(Ω),

where L2
0(Ω) is the subspace of L2(Ω) consisting of all such functions in L2(Ω) that

have mean value zero. For this model problem we can take for simplicity, but without

loss of generality, the viscosity to be equal to one.

1.2.2 Introduction to stabilized methods

Galerkin method. The standard Galerkin method, naturally associated with fi-

nite element methods, can be described as being an approximation of the variational

formulation of a partial differential equation (PDE), or system of PDE’s, on a space

of functions that is spanned by piecewise polynomials. Therefore, the basic Galerkin

method is constructed based on the variational formulation (1.2.3) by taking a sub-

space Vh of H1
0 (Ω) spanned by continuous piecewise polynomials, as

Find φh ∈ Vh such that

(Lφh, wh) = (φh
,t + a · ∇φh, wh) + (κ∇φh,∇wh) − (f, wh) = 0 ∀wh ∈ Vh.

The Galerkin method is a weighted residual formulation in which weighting and in-

terpolation functions are from the same class of functions. The Galerkin method has

been widely used in the mid 60’s and early 70’s and has been thought to be “THE”

method to approximate PDE’s. This idea was confirmed by the success of the method

when applied to elliptic problems. The problems occur when the method is applied

to more complicated problems, as stated by F. Brezzi et al. in [7]: “However in the

midst of this success the experts were aware that there were problems in applying this

recipe to all problems under the sun.”

A typical class of problems where standard Galerkin methods fail are advection dom-

inated problems, which are fundamental model problems in computational fluid dy-

namics since they expose the weakness of the classical numerical approaches, such

6



1.2. Overview of stabilized methods

as central and upwind finite difference methods, as well as Galerkin finite element

methods. It is well known that the Galerkin finite element method gives rise to

central-difference type approximations of differential operators which are well suited

only for elliptic problems. When the flow is dominated by advection, that is for

high Peclet (or in the context of the Navier-Stokes equations, Reynolds) numbers,

the Galerkin discretization gives rise to node-to-node oscillations of the solution or

“wiggles.” The only way to eliminate the oscillations seemed to be the refinement of

the computational mesh in such a way that convection no longer dominates on the

element level.

Upwind method. Wiggle-free solutions can be obtained by introducing upwind

information to the convective term. Upwind convective terms can be constructed by

adding artificial diffusion to the Galerkin method. For the steady one dimensional

advection-diffusion model, the method can be formulated as:

Find φh ∈ Vh such that

(aφ′, w) + ((κ+ k̃)φ′, w′) = (f, w) ∀wh ∈ Vh,

with φ′ = ∂φ/∂x and the artificial diffusivity defined as

k̃ =
|a|he

2
ξ̄(αe), (1.2.4)

where he is the element size and

ξ̄(αe) = coth(αe) −
1

αe
,

αe =
|a|he

2k
(element Peclet number).

There are several drawbacks to this method, one is that upwind methods are gen-

erally less accurate. The loss of accuracy is manifested by overly diffuse solutions.

Secondly, adding artificial diffusion is not related to the physics of the problem. In

the framework of finite element methods, upwinded convective terms can be devel-

oped for example by modifying the weighting functions to achieve the upwind effect.

This method has been successfully applied to the one dimensional advection-diffusion

problem and was later extended to two dimensional cases. Unfortunately, when gen-

eralizing to more complicated problems, the method fails in the sense that it produces

overly diffuse results or non accurate solutions. These effects can be observed in the

presence of source terms, in time-dependent problems or when generalized to higher

dimensions.

Summarizing, upwind finite element methods may be constructed by adding artificial

diffusion to the Galerkin formulation, which results in exact nodal solutions for the

one dimensional advection-diffusion problem, as discussed in [24], [25]. The failure of
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Chapter 1. Introduction

this method for higher dimensions is due to the presence of crosswind effects, that

is unnecessary diffusion in directions normal to the flow. Combining the success and

failure of the upwind method, it is apparent that the upwinding effect is needed only

in the direction of the flow.

Streamline upwind method. The streamline upwind method (SU) was intro-

duced in [25] and designed to eliminate the crosswind diffusion problem. In this

method, the artificial diffusivity, k̃, used in the one dimensional case (1.2.4), is re-

placed by the artificial diffusivity tensor k̃ij , defined as

k̃ij = k̃âiâj (1.2.5)

where âi = ai/‖a‖, ‖a‖ =
∑

i aiai and k̃ a scalar artificial diffusivity. Note that

(1.2.5) represents a diffusivity acting only in the direction of the flow. The method

can be formulated as:

Find φh ∈ Vh, such that ∀wh ∈ Vh, the following is valid

(Lφh, wh) + SSU (φh, wh) = 0, (1.2.6)

where

SSU (φh, wh) =
∑

e

(

(a · ∇φh), τe(a · ∇wh)
)

e
(1.2.7)

is the stabilization operator with τe a free parameter which determines the amount

of upwind weighting. We will discuss in this thesis the development of this parameter

for several problems in fluid mechanics and we will emphasize its importance in the

stability of numerical methods. While integrals in the Galerkin method are defined

over the entire computational domain, integrals in the stabilization term are restricted

to elements and we indicate them with a subscript e. Note that stabilization terms

are added only on the element interiors and not on the element boundaries. The SU

method produces smooth solutions for high Reynolds number flows and the streamline

upwinding solves also the crosswind problem. Modifying the test function for the

convective term results, however, in a non-residual formulation. Consequently, the

exact solution of the differential equation is no longer a solution of the variational

problem as in the case of a Galerkin formulation. Non-residual formulations are known

to produce inaccurate or wrong solutions when source terms are significant. Already

in [8] some inconsistencies were realized since the source term and the time dependent

part of the system was centrally weighted, resulting in overly diffuse solutions. Upwind

weighting of all terms in the equation is therefore needed.

Streamline upwind Petrov-Galerkin method. A possibility to solve the incon-

sistencies of the SU method was proposed by Hughes and Brooks [25], [26], for a

scalar advection-diffusion equation and consists in applying the streamline-upwind

8



1.2. Overview of stabilized methods

test function to all terms in the equation. This method is called streamline upwind

Petrov-Galerkin method (SUPG). Summarizing, the basic idea of the streamline up-

wind method is to add diffusion which acts only in the direction of the flow. This was

then extended to a Petrov-Galerkin formulation, that means modifying the standard

Galerkin weighting functions wh (for all terms in the equation) by adding a streamline

upwind perturbation which acts only in the flow direction:

w̃h = wh + τa · ∇wh. (1.2.8)

The SUPG method can be formulated as:

Find φh ∈ Vh, such that ∀wh ∈ Vh, the following is valid

(Lφh, wh) + SSUPG(φh, wh) = 0, (1.2.9)

where

SSUPG(φh, wh) =
∑

e

(Lφh, τea · ∇wh)e

=
∑

e

(

φh
,t + a · ∇φh −∇ · (κ∇φh) − f
︸ ︷︷ ︸

advection-diffusion residual

, τe(a · ∇wh)
)

e
. (1.2.10)

At this point a separation has to be made between methods that apply an artificial

diffusion and the SUPG method. It is important to note that SUPG is no longer

associated with artificial diffusion and results in a consistent method.

In [8] SUPG has been applied to the linear scalar advection-diffusion equation and the

incompressible Navier-Stokes equations. We will describe the development of SUPG

for these two model problems later on in this section.

Galerkin least-squares method. More recently, a new class of stabilization meth-

ods was developed by observing that stabilization terms may be obtained by minimiz-

ing the square of the equation residual. This method, called Galerkin least-squares

(GLS) method, is introduced in [29]. The basic idea is the following: start with the

Galerkin finite element method and add least-squares terms of the residual. These

terms enhance the stability of the Galerkin method without degrading accuracy. The

stabilization term has the form

SGLS(φh, wh) =
∑

e

(

Lφh, τeLwh
)

e
. (1.2.11)

Both stabilization methods, viz. SUPG and GLS, are obtained by adding stabilization

terms to the Galerkin formulation. The difference is in the structure of the stabiliza-

tion terms and the GLS stabilization is a more general stabilization approach. This

approach has been successfully applied to Stokes flows [27], compressible flows [29]

9
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and [50], and incompressible flows [13], [52], and will be one of the main topics of this

thesis.

Despite of its success, at this point we also have to address several shortcomings of the

GLS and SUPG methods concerning the treatment of sharp boundary layers, source

terms, time dependent flow problems and the generalization to multi-dimensions. For

the remainder of this introduction we will discuss how these difficulties have been

approached to successfully apply the GLS and SUPG methods to a large variety of

fluid flow problems.

As discussed in [34], SUPG (and this applies also for GLS) is an excellent method

for problems with smooth solutions, but local oscillations in the solution occur when

discontinuities are present. To improve on this situation, in [34] a discontinuity-

capturing term is added to the SUPG/GLS formulation. Such schemes are designed

to introduce a dissipative effect in the neighborhood of discontinuities, without de-

grading the accuracy of the solution elsewhere in the flow field, see Figure 1.2. The

discontinuity-capturing term has a form similar to the streamline term, but acts in

the direction of the solution gradient rather than in the direction of the streamline.

Since the discontinuity-capturing term is a function of the discrete solution gradient,

the numerical method is nonlinear (even when the original equation is linear). Note

that GLS or SUPG by itself is a linear method. In [34], the discontinuity-capturing

term was defined for the scalar advection-diffusion equation and [33] deals with its

generalization to systems.

The second topic of this introduction section on GLS/SUPG is its application to the

incompressible Navier-Stokes equations. For incompressible flows, oscillations may

arise not only from the convective nature of the flow, but also from the choice of

finite element interpolation functions for the velocity and pressure. These numerical

instabilities appear as oscillations in the pressure field. Treatment of the incompress-

ibility constraint is one of the most difficult aspects of numerical algorithms for the

incompressible Navier-Stokes equations. The classical Galerkin method applied to

the incompressible Navier-Stokes equations gives rise to a so-called mixed method.

The success of this method strongly depends upon the particular pair of velocity and

pressure interpolations employed. For many combinations that would seem to be a

Figure 1.2: Oscillations present in the Galerkin method (left), controlled by stabi-

lized methods (middle) and the overshoots/undershoots removed by the discontinuity

capturing operator (right).

10
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natural choice, severe oscillations in the pressure occur. The incompressibility con-

straint and its relation to the pressure field have been subject to extensive research.

The mathematical framework for understanding the behavior of mixed methods for

the Stokes problem was provided by Ladyzhenskaya, Babuška [1] and Brezzi [5]. Their

result is one of the most important results in the theory of finite element methods

and it was named Ladyzhenskaya-Babuška-Brezzi (LBB) or inf-sup stability condi-

tion. Due to the constraint nature of incompressible flows, the chosen combination

of interpolation functions for velocity and pressure must satisfy the inf-sup stability

condition. The GLS/SUPG method for the incompressible Navier-Stokes equations

stabilizes the formulation to both the convective effects and the inf-sup condition.

This makes it possible to use equal order interpolation functions for the velocity and

pressure [28].

Due to their importance for the methods discussed in this thesis, we briefly sum-

marize stabilized methods for the Stokes equations. The Stokes equations physically

model slow motion of an incompressible fluid. In computational fluid dynamics, the

Stokes equations provide an important model problem for analyzing finite element

algorithms, such as stabilized methods. The reason that it is chosen as a model prob-

lem in many studies, and also by us, is that some of the difficulties encountered when

solving the full incompressible Navier-Stokes equations are also present in the more

simple Stokes equations.

The stabilized variational formulation for the Stokes equations was first formulated

in [28]. In [27] the stabilized method for the Stokes equations was reformulated and

almost at the same time in [11] an absolutely stabilized finite element formulation was

given by Douglas and Wang, which can be viewed as a modification of the formulation

given in [27]. The two methods can be formulated simultaneously as follows:

Find (uh, ph) ∈ Vh × Ph such that for all (wh, qh) ∈ Vh × Ph

(∇uh,∇wh) − (∇ · wh, ph) − (∇ · uh, qh) − α
∑

e

h2
e(−∆uh + ∇ph, ±∆wh + ∇qh)

= (f, wh) − α
∑

e

h2
e(f,−ν∆wh + ∇qh), (1.2.12)

where α is a positive number and Vh, Ph are the finite element spaces for the velocity

and pressure, respectively. Note that the two methods differ only in the sign of the

term ∆wh in the stabilization term. The original methods, as proposed in [28], [27]

and [11], have an additional jump term in the pressure, which is not important to

our discussion. The “plus” method reduces to the method described in [27] and the

“minus” formulation to the one given in [11]. The improvement from the original

formulation given in [28] to the “plus” formulation in (1.2.12) is that the first one did

not contain the ∆wh term and therefore, the latter one is symmetric and suitable for

any combination of finite element spaces, either continuous or discontinuous for the

pressure. The existence, uniqueness and convergence of the solution of the formulation

11
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(1.2.12) still depends, however, on the stability constant α, which depends on the

element shape. The main difference between the “plus” and the modified “minus”

formulation is that the “minus“ formulation is stable and convergent for all positive

values of α. Furthermore, the results in [14] suggest that the method of Douglas and

Wang in [11] is more robust, that means the accuracy of the finite element solution

is less sensitive to the choice of α. On the other hand, the method of Douglas and

Wang does not result in a symmetric system of equations.

Encouraged by the benefit that the method of Douglas and Wang has improved stabil-

ity characteristics for Stokes flow compared with the GLS method when higher order

interpolations are used, Franca et. al. [14], examined the consequence of its applica-

tion to the incompressible Navier-Stokes equations. As a first step, the effect of this

approach was analyzed on the advection-diffusion model and in [13] it was applied to

the incompressible Navier-Stokes equations. In [14], Franca et. al. re-addressed the

question of a careful design of the stability parameter. The motivation was to obtain

good performance of the GLS method in the entire spectrum varying from advective

to diffusive dominated flows. The design of the stabilization parameter is slightly

improved by taking into account constants arising from inverse estimates. The usual

element Peclet number was also modified to include the effect of the specific finite

element polynomials employed.

It is important to mention that the GLS and SUPG stabilization methods have been

successfully applied to not only incompressible, but also compressible flows. The

SUPG method for hyperbolic systems and the compressible Euler equations was first

introduced in [53] and later with additional examples in [35]. Other examples are

the SUPG and GLS stabilization methods for compressible flows in entropy variables

formulation in [31] and [50], respectively.

A central question which we will address in this thesis is the development of stabiliza-

tion operators suitable for compressible flows which ensure that in the incompressible

limit no pressure oscillations occur when equal order polynomials are used for the

velocity and pressure.

Our work in compressible flows has emphasized the use of entropy variables. The

method based on entropy variables possesses unique properties and provides a unified

framework for both compressible and incompressible flows. There is a large variety

of numerical methods developed for both type of flows and the main objective of

this research is to collect ideas that have been successfully used in one field and can

be applied in the other field. Examples of such ideas are the concept of stabilized

methods and the use of entropy variables in the governing equations. The main topic

of this thesis is to further investigate the choice of the stabilization parameters and

give a suitable form that can be used for both compressible and incompressible flow

computations.

12



1.2. Overview of stabilized methods

1.2.3 Identification of the stabilization parameter τ.

An important component in the stabilization operator is the stabilization parameter

(or matrix) τ, see for instance (1.2.10) and (1.2.11). The proper definition of the stabi-

lization parameter τ is important for the stability and accuracy of the finite element

discretization. An optimal parameter for the one dimensional advection-diffusion

equation is available, which brings the next question, namely, how to generalize it to

more dimensions, systems and more complicated flow problems. In this section we

give a brief overview of stabilization parameters and emphasize what are the problems

we want to overcome.

1 D case. For the one dimensional linear, steady advection-diffusion equation with-

out source term, it was shown in [26] that when the artificial diffusion parameter ke

is chosen as

ke =
|a|he

2
ξ̄(αe), (1.2.13)

where

ξ̄(αe) = coth(αe) −
1

αe
, αe =

|a|he

2k
(element Peclet number),

with he the element length, and when linear basis functions are employed, then the

SUPG method gives rise to nodally exact solutions.

Multidimensional systems. A big step towards the generalization of the stream-

line operator in the SUPG method to multidimensional advective-diffusive systems

was made in [32]. There have been earlier attempts to extend the definition of the

stabilization term to one dimensional systems by using the same stabilization param-

eter for all components in the system. The failure of this approach was pointed out

in [32]. Since in the original formulation only one τ parameter is used, there is no

possibility to obtain simultaneously an optimal behavior with respect to all compo-

nents in the system. If τ is too small for a particular component, spurious oscillations

will result for that component. If τ is too large, it results in overly diffuse solutions.

Consequently, a distinct τ is needed for each component. Successful generalizations

to the multidimensional case must satisfy three important design requirements:

(1) It reduces consistently to the optimal one-dimensional system case.

(2) It is equivalent to SUPG/GLS for a scalar, multidimensional advection-diffusion

equation.

(3) It reduces to SUPG/GLS on each uncoupled component of a multidimensional,

diagonalizable advective-diffusive system.
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In [32], a new definition of τ is presented, which represents a correct generalization of

the streamline operator to coupled multidimensional systems. It is important to point

out that a generalization of the concept of the absolute value of a matrix is required.

The presentation of the SUPG method in [32] was restricted to steady cases. The

generalization of τ to the unsteady space-time case in the framework of the GLS

method is presented by Shakib in [50]. In this definition, τ is first formulated for pure

advection, and then adjusted for the presence of diffusion.

A unified approach. In this thesis we address the question of designing a unified

form of stabilization matrices, valid for a lage spectrum of flows. As we discussed

earlier, the entropy variables provide a good starting point to obtain such a unified

formulation. The main objective of this research is to design stabilization operators

for entropy variables such that this operator is well defined in the incompressible limit.

Although stabilized methods based on entropy variables possess unique properties, it

is appealing to extend the formulation to other sets of variables, such as the pressure

primitive variables. The benefits of obtaining alternative formulations include easier

implementation and also easier analysis of possible stabilization operators. Since the

pressure primitive variables are also suitable to study the incompressible limit, we

use this set to obtain a dimensionally consistent stabilization operator for primitive

variables and then extend it to entropy variables. For primitive variables, the sta-

bilization matrix can be chosen to be of diagonal form, which has been successfully

applied in previous research on incompressible flows, see [13]. When transforming

this matrix to entropy variables, it results, however in a non-symmetric stabilization

matrix, which destroys the symmetry of the weak formulation in entropy variables.

It is possible to obtain a diagonal stabilization matrix for the entropy variables which

is positive definite. This simple choice is, however, not good, as is shown by the

numerical examples in [23]. In the same paper stabilization matrices for both entropy

and primitive variables are proposed that can be employed for both compressible and

incompressible flow computations, but there is still significant room for improvement

and a need to further understand the properties of this type of stabilization operators,

which will be addressed in this thesis.

1.3 Outline of this thesis

The contents of this thesis can be summarized as follows. The underlying physics of

viscous flow is described in Chapter 2. This chapter recalls the basic thermodynamic

relations that are used later in this thesis. These relations are constructed such that

they satisfy Maxwell’s fundamental thermodynamic relationships. In Chapter 2 a

general equation of state is derived, using three measurable quantities. This equation

of state can be used to describe both compressible and incompressible flows.
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A comparative study of different sets of variables to give a unified formulation of

the governing Navier-Stokes equations, valid for both compressible and incompress-

ible flows, is given in Chapter 3. This chapter concludes that the incompressible

limit of the Navier-Stokes equations is well defined only for entropy (or symmetrizing

variables) and primitive variables (p, u, T ).

In Chapter 4 we focus on the design and analysis of a dimensionally consistent class

of stabilization operators suitable for space-time Galerkin least-squares finite element

discretizations of the incompressible Navier-Stokes equations. In the analysis of the

stability of the linearized incompressible Navier-Stokes equations, we give necessary

and sufficient conditions for the positive definiteness of the proposed stabilization

matrix for entropy variables.

If entropy or primitive variables are employed, the same formulation can be used

to compute both compressible and incompressible flows. This gives the possibility

to design stabilization operators that are well defined in the incompressible limit,

which is very appealing. In Chapter 5, we define a class of stabilization operators

for compressible flows without shocks and show that in the limit it is identical to the

stabilization operator suitable for incompressible flows. The Galerkin least-squares

method using the symmetrized form of the equations satisfies the Clausius-Duhem

inequality, which is a non-linear stability condition. A crucial ingredient in the non-

linear stability proof is the positive definiteness of the stabilization matrix. Therefore,

the second topic of this chapter is to give necessary and sufficient conditions on the

positive definiteness of the designed stabilization matrix.

The finite element discretization of the incompressible Navier-Stokes equations is

presented in Chapter 6. The basis of our formulation is a time-discontinuous Galerkin

least-squares method. The finite element discretization of the space-time variational

equation leads to a system of nonlinear algebraic equations at each space-time slab.

To reduce the nonlinear system to a sequence of linear systems, a predictor multi-

corrector algorithm is used. The discretization presented in this chapter consists of a

linear-in-time approximation.

In Chapter 7 we describe several test cases and applications to verify and demonstrate

the Galerkin least-squares finite element method for the incompressible Navier-Stokes

equations. Finally, we demonstrate the stabilization technique for the simulation of

unsteady viscous flow about a circular cylinder. The main emphasis will lie on the

accuracy of the simulation of the unsteady vortical structures in the wake, which is

essential to obtain accurate predictions of unsteady lift and drag forces.

In Chapter 8, we draw conclusions and make recommendations for future research.
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Chapter 2

Background and physics

This chapter discusses some basic aspects of thermodynamics which will be useful in

this thesis. Thermodynamics is based on two general laws in nature, the first and

the second law of thermodynamics. Based on these laws other observed properties

of a given system can be derived. Since in this thesis we are dealing with both

compressible and incompressible flows, we are interested in expressing or relating

different thermodynamic properties.

In this chapter we only consider isolated systems, that is, systems that cannot ex-

change energy with the surroundings and are in a state of thermodynamic equilibrium.

The quantities whose values determine the thermodynamic state of a system are called

state variables. If a system is in thermodynamic equilibrium, all thermodynamic vari-

ables are defined and have a unique value. When we change the state variables, the

state of the system will change and this change is called a process. There are two kinds

of processes: reversible and irreversible. When studying the thermodynamic proper-

ties of a system, we mainly consider reversible processes, however, in reality a process

is never truly reversible. The thermodynamic properties of a system can be of two

types: intensive or extensive. An intensive variable is one whose value is independent

of the mass of the system. Examples are pressure, temperature and density. On the

other hand extensive variables are for example the volume, the internal energy or the

entropy of a system. When an extensive variable is divided by the mass, it becomes

an intensive variable and the ratio is called the specific value of that variable. In this

chapter we will study both the intensive and extensive properties of some relevant

variables and we will see that in many cases it is more convenient to work with the

intensive form of the thermodynamic equations. For notational simplicity, we shall

use capital letters for extensive variables (except the temperature) and small letters

for the corresponding specific values.
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2.1 Thermodynamics

There are two approaches to study thermodynamics, one is the classical way and

the other is the axiomatic way. The two main concepts of the classical theory are

the law expressing conservation of energy, or the first law of thermodynamics, and

the second one relating thermodynamic properties to each other, the second law

of thermodynamics. The key concept which enables us to relate thermodynamic

properties is entropy. In the classical approach, entropy is defined using the first law

combined with the concept of a reversible process. This is, however, too restrictive,

since completely reversible processes do not exist in real life. Here comes the benefit of

the axiomatical approach, which is emphasized in [44]. The fundamental assumption

in the axiomatical approach is equivalent to the second law of thermodynamics. One

of the key benefits of this approach is that it enables us to examine the thermodynamic

state properties without explicitly using the first law. In this thesis we will follow the

axiomatic approach.

2.2 Fundamental thermodynamic relations

When a system is in a state of thermodynamic equilibrium, all thermodynamic prop-

erties have definite and unique values. From experiments, it follows that fixing three

extensive independent properties will determine the thermodynamic state of a system

containing a single substance without chemical reactions. It is, however, important to

notice that three arbitrary variables will not determine the thermodynamic equilib-

rium of the system, but these three variables must form an independent set. We will

see later in this section that if we are interested in the intensive state of the system,

only two independent intensive properties are needed. Following the approach in [44],

we choose the following independent variables: the internal energy E, the volume V,

and the number of moles N of the substance, all written in their extensive forms.

Choosing values for E, V, and N fixes the thermodynamic state and determines the

value of all other thermodynamic properties. Consider the following function for the

entropy:

(FE) S = S(E, V,N). (2.2.1)

The entropy S is the dependent variable in (2.2.1) and since it contains all the thermo-

dynamic information about the substance it is called the fundamental thermodynamic

equation for the system. This means that if this function is known, all thermodynamic

properties can be found. Note that this is not true for any thermodynamic function.

Assume now that we know the function S = S(E, V,N). The total differential of the

entropy is given by

dS =

(
∂S

∂E

)

V,N

dE +

(
∂S

∂V

)

E,N

dV +

(
∂S

∂N

)

E,V

dN. (2.2.2)
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The partial derivatives of this function are used to define the following thermodynamic

variables:

temperature T =

((
∂S

∂E

)

V,N

)−1

(2.2.3)

pressure p = T

(
∂S

∂V

)

E,N

(2.2.4)

chemical potential µ̃ = −T
(
∂S

∂N

)

E,V

. (2.2.5)

A substance has three equations of state, T = T (E, V,N), p = p(E, V,N) and µ̃ =

µ̃(E, V,N), which follow from (2.2.3), (2.2.4) and (2.2.5). By substituting the three

equations of state into (2.2.2), we define the fundamental differential equation of

thermodynamics

(FDE) TdS = dE + p dV − µ̃dN. (2.2.6)

Different substances can have different fundamental equations, but they will all satisfy

the FDE given in (2.2.6). The most common way of relating thermodynamical prop-

erties is to give the equations of state of the system and then find all the properties

of our interest. In this sense, it is important to notice that if we know the three equa-

tions of state, this is equivalent to knowing the fundamental equation. Consequently,

all other thermodynamic properties can be determined. Due to its importance and

since we will often use this later in this thesis, we illustrate this equivalence shortly.

For details of the proof we refer to [44]. Using the property that the entropy S is a

homogeneous function of degree one, we obtain the relation
(
∂S

∂E

)

V,N

E +

(
∂S

∂V

)

E,N

V +

(
∂S

∂N

)

E,V

N = S. (2.2.7)

Substituting the definition of the equations of state (2.2.3), (2.2.4) and (2.2.5) into

(2.2.7), we obtain the so-called Euler equation

S =
1

T
E +

p

T
V − µ̃

T
N. (2.2.8)

If we know the three equations of state for T, p and µ̃, we can determine the fundamen-

tal equation by substituting them into (2.2.8). Hence, (2.2.8) shows the equivalence

between the fundamental equation (2.2.1) and the three equations of state.

An important consequence of Euler’s equation is that the three equations of state

are not completely independent. When we differentiate Euler’s equation (2.2.8) and

subtract the FDE (2.2.6), we obtain

E d

(
1

T

)

+ V d
( p

T

)

−Nd

(
µ̃

T

)

= 0. (2.2.9)
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Assuming that two equations of state are given, the third one can be obtained by

integrating (2.2.9).

Remark 2.2.1 Knowledge of two equations of state determines all thermodynamic

information with the exception of a constant.

Remark 2.2.2 The most important issue concerning the axiomatic approach is that

the major characteristics of entropy can be found only after we state the second law

of thermodynamics. More precisely, the definition of thermodynamic properties by

using the derivatives of the entropy can only be validated using the second law of

thermodynamics. For further details on the validation we refer to [44].

Next, we formulate thermodynamic properties and relations in their intensive forms

by employing a unit-mass basis. Any intensive property x can be obtained from its

extensive form X as

x =
X

MN

where M is the mass of one mole of substance. Since S is a homogeneous function of

degree one, we obtain for the entropy per unit mass

s =
S

MN
= S

(

e, v,
1

M

)

= s(e, v)

where M has been absorbed in the last equality. This shows that only two intensive

properties define the thermodynamic state of the system. Consider the fundamental

equation for the system, now in the intensive form

(FE) s = s(e, v). (2.2.10)

The fundamental differential equation for the intensive function s(e, v) is

(FDE) ds =
1

T
de+

p

T
dv. (2.2.11)

Note here that (2.2.11) is also known as the fundamental equation of Gibbs and in

classical thermodynamics it is derived for a reversible process from the first and second

laws.

There are two intensive equations of state corresponding to (2.2.3) and (2.2.4):

EOS1 :
1

T
=

(
∂s

∂e

)

v

, that is T = T (e, v) (2.2.12)

and

EOS2 :
p

T
=

(
∂s

∂v

)

e

, that is p = p(e, v). (2.2.13)
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2.2. Fundamental thermodynamic relations

The third equation of state cannot be derived directly from s(e, v), but we can sub-

stitute the intensive forms into Euler’s equation (2.2.8) and obtain

µ̃

M = e+ pv − Ts = h− Ts, (2.2.14)

where h = e + pv denotes the specific enthalpy. Dividing the chemical potential by

M changes it from a mole to a unit-mass basis. Note that for the remainder of this

thesis we will use the unit-mass basis and for simplicity we denote it by µ̃.

In order to define the incompressible limit of the Navier-Stokes equations two quan-

tities need to be defined. These are the volume expansivity αp and the isothermal

compressibility βT , which are defined as:

αp =
1

v

(
∂v

∂T

)

p

, βT = −1

v

(
∂v

∂p

)

T

. (2.2.15)

Given the fundamental equation (2.2.10), we can determine the specific heat at con-

stant pressure cp and the specific heat at constant volume cv , which are defined as:

cp(T, p) = T

(
∂s

∂T

)

p

, (2.2.16)

and

cv(T, v) = T

(
∂s

∂T

)

v

. (2.2.17)

In the next section we will show that αp, βT and cp (or cv) completely define the

equilibrium thermodynamic state of a single substance. As a preliminary step towards

this, in the remainder of this section we derive an important relation between the

specific heats at constant pressure cp and constant volume cv using the definitions

(2.2.15). Let us choose (v, T ) as independent variables and introduce the Helmholtz

free energy

f = f(v, T ) = e− Ts. (2.2.18)

Differentiation of (2.2.18) gives

df = de− sdT − Tds, (2.2.19)

and introducing the FDE (2.2.11) results in

df = −pdv − sdT. (2.2.20)

On the other hand, the total differential of f is given by

df =

(
∂f

∂v

)

T

dv +

(
∂f

∂T

)

v

dT. (2.2.21)
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Chapter 2. Background and physics

Comparing the coefficients in (2.2.20) with the ones in (2.2.21), we obtain

s = −
(
∂f

∂T

)

v

, (2.2.22)

p = −
(
∂f

∂v

)

T

(2.2.23)

and the derivatives
(
∂s

∂v

)

T

= − ∂2f

∂T∂v
,

(
∂p

∂T

)

v

= − ∂2f

∂T∂v
. (2.2.24)

Hence (
∂s

∂v

)

T

=

(
∂p

∂T

)

v

. (2.2.25)

Let us choose now (p, T ) to be the independent variables. Using Euler’s equation

(2.2.14) we can consider

µ̃ = µ̃(p, T ) = h− Ts.

The total differential of the enthalpy can then be written in the form

dh = dµ̃+ sdT + Tds

=

(
∂µ̃

∂p

)

T

dp+

((
∂µ̃

∂T

)

p

+ s

)

dT + Tds. (2.2.26)

On the other hand,

dh = de+ pdv + vdp = Tds+ vdp (2.2.27)

where in the last equality we used the FDE. Comparing the coefficients in (2.2.26)

with the ones in (2.2.27), we obtain

v =

(
∂µ̃

∂p

)

T

,

s = −
(
∂µ̃

∂T

)

p

.

Therefore, the volume expansivity can be expressed as

αp =
1

v

(
∂v

∂T

)

p

=
1

v

(
∂2µ̃

∂p∂T

)

T

= −1

v

(
∂s

∂p

)

T

. (2.2.28)

The definitions (2.2.15), combined with (2.2.25) (2.2.28) gives the relation:

(
∂p

∂T

)

v

=

(
∂s

∂v

)

T

=

(
∂s
∂v

)

T

(
∂v
∂p

)

T(
∂v
∂p

)

T

=

(
∂s
∂p

)

T(
∂v
∂p

)

T

=
αp

βT
. (2.2.29)
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2.2. Fundamental thermodynamic relations

Next we derive a relation between the specific heats and the volume expansivity αp

and isothermal compressibility βT . For this, we first express the total derivative of

the internal energy e = e(v, T )

de =

(
∂e

∂T

)

v

dT +

(
∂e

∂v

)

T

dv = cvdT +

(
∂e

∂v

)

T

dv, (2.2.30)

where the second equality follows from

(
∂s

∂T

)

v

=
1

T

(
∂e

∂T

)

v

=
1

T
cv(T, v), (2.2.31)

which is the FDE combined with definition (2.2.17). Using the differential of the

Helmholtz free energy in combination with (2.2.23) and (2.2.29), we obtain

(
∂e

∂v

)

T

=

(
∂f

∂v

)

T

+ T

(
∂s

∂v

)

T

= −p+ T
αp

βT
. (2.2.32)

Inserting (2.2.30) into the FDE, results in

ds =
1

T
cvdT +

1

T

(
∂e

∂v

)

T

dv +
p

T
dv,

which we can use in the definition of cp to obtain the relation

cp = cv +

((
∂e

∂v

)

T

+ p

)(
∂v

∂T

)

p

. (2.2.33)

Combining the above equation with (2.2.32) and using the definition of αp, we obtain

cp − cv =

((
∂e

∂v

)

T

+ p

)

vαp =
α2

pvT

βT
. (2.2.34)

2.2.1 Incompressible fluid

In this section special attention is given to an incompressible fluid. For a completely

incompressible fluid both αp and βT , defined in (2.2.15), are zero. First we consider

the speed of sound a, given by

a =

√
(
∂p

∂ρ

)

s

=

√

−v2

(
∂p

∂v

)

s

where ρ = 1/v is the density of the fluid. We express the speed of sound in terms of

the isothermal compressibility βT using the cyclic rule

(
∂x

∂y

)

z

(
∂y

∂z

)

x

(
∂z

∂x

)

y

= −1. (2.2.35)
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Chapter 2. Background and physics

Therefore, from
(
∂s

∂T

)

v

(
∂T

∂v

)

s

(
∂v

∂s

)

T

= −1

in combination with (2.2.31), it follows that

cv = −T
(
∂v

∂T

)

s

(
∂s

∂v

)

T

.

Similarly, from
(
∂s

∂T

)

p

(
∂T

∂p

)

s

(
∂p

∂s

)

T

= −1,

and (2.2.16), we can express cp as

cp = −T
(
∂p

∂T

)

s

(
∂s

∂p

)

T

.

The dimensionless variable γ can then be written as

γ =
cp
cv

=

(
∂p
∂T

)

s

(
∂s
∂p

)

T
(

∂v
∂T

)

s

(
∂s
∂v

)

T

=

(
∂p

∂v

)

s

(
∂v

∂p

)

T

=
a2βT

v

Therefore,

a2 =
γ

ρβT
, (2.2.36)

which leads to an infinite speed of sound in an incompressible fluid. For an in-

compressible fluid the density is constant and not a thermodynamic variable. The

thermodynamic theory in this approximation has one less independent variable than

for a simple compressible substance. The fundamental differential equation of an

incompressible fluid is

(FDEI) ds =
1

T
de. (2.2.37)

From the FDEI (2.2.37)
(
∂s

∂T

)

v

=
1

T

(
∂e

∂T

)

v

=
1

T
cv(T, v),

where in the last equality we used (2.2.31). Since for an incompressible fluid the

density is constant, the specific heat is cv = cv(T ). Therefore,

e =

∫ T

T0

cv(T̃ )dT̃ ,

and if we assume that cv is constant, then e = e0 + cvT. Consequently, for incom-

pressible fluids, the internal energy is a function of the temperature only. Using the

thermal equation of state we can find the fundamental equation as

1

T
=

(
∂s

∂e

)

v

=

(
∂s

∂T

)

v

(
∂T

∂e

)

v

=

(
∂s

∂T

)

v

1

cv
, ⇒ s = s0 +

∫ T

T0

cv(T̃ )

T̃
dT̃ , (2.2.38)
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2.3. General equation of state

that is s = s0 + cv lnT for constant cv. The pressure equation of state is obtained

from (2.2.13), however, for an incompressible fluid the thermodynamic pressure is

zero because s is independent of v. There is a pressure in an incompressible fluid,

but it does not influence the thermodynamic state and is only a mechanical variable.

This implies that other previously defined variables which involve the pressure, are no

longer a purely thermodynamic variable. For instance, the enthalpy or the chemical

potential,

h = e+ pv, µ̃ =

∫ T

T0

cv(T̃ )dT̃ + pv − s0T − T

∫ T

T0

cv(T̃ )

T̃
dT̃ ,

and for constant cv, µ̃ = e + pv − T (s0 + cv lnT ). A conclusion that follows is that

the incompressible fluid has only one specific heat:

cp =

(
∂h

∂T

)

p

=
∂(e+ pv)

∂T
=

de

dT
= cv . (2.2.39)

Therefore, the ratio of specific heats, γ = cp/cv, is unity for an incompressible fluid.

2.3 General equation of state

In the general discussion of thermodynamic states of materials in Section 2.2, we

showed that by knowing the FE, or equivalently the equations of state, we can ex-

press all thermodynamic quantities. For different materials, a different FE is valid.

The question is, can we give a general form of the FE, such that by taking the in-

compressible limit, the FE is well defined and describes an incompressible fluid. The

incompressible limit is defined using two measurable quantities, αp and βT . Our aim

is to employ them in the FE.

In this section, we give a general form of the FE that can be used for both compressible

and incompressible flows. We state that the thermodynamic state of a single species

material is determined by three measurable quantities, αp, βT and cp, defined in

(2.2.15) and (2.2.16), respectively.

Consider p and T as independent variables. The total differential of the specific

volume can be expressed as:

dv =

(
∂v

∂T

)

p

dT +

(
∂v

∂p

)

T

dp = αpv dT − βT v dp. (2.3.1)

Integrating (2.3.1), we obtain

ln v = ln v0 +

∫ T

T0

αp(p0, T̃ )dT̃ −
∫ p

p0

βT (p̃, T )dp̃. (2.3.2)
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Chapter 2. Background and physics

where v0 = v(p0, T0). Then,

v(p, T ) = v0 exp

(
∫ T

T0

αp(p0, T̃ )dT̃ −
∫ p

p0

βT (p̃, T )dp̃

)

. (2.3.3)

Hence, if αp and βT are known, for instance through measurements, then using (2.3.3)

we can determine the specific volume as a function of p and T.

Next, we express the entropy in terms of αp, βT and cp. The total differential of the

entropy is

ds =

(
∂s

∂T

)

p

dT +

(
∂s

∂p

)

T

dp =
cp
T

dT − αpv dp, (2.3.4)

where we used the relations (2.2.16) and (2.2.28). Integrate (2.3.4) and using the

relation (2.3.3) for v, we obtain

s(p, T ) = s0 +

∫ T

T0

cp(p0, T̃ )

T̃
dT̃

− v0

∫ p

p0

αp(p̃, T ) exp

(
∫ T

T0

αp(p0, T̃ )dT̃ −
∫ p̃

p0

βT (p̂, T )dp̂

)

dp̃, (2.3.5)

with s0 = s(p0, T0). Therefore, s is defined as a function of the measurable quantities

αp, βT and cp.

By taking the limit αp = βT = 0, we obtain for an incompressible substance the

relation

sinc(p, T ) = s0 +

∫ T

T0

cp(p0, T̃ )

T̃
dT̃ ,

which is only a function of T, that is

sinc(T ) = s0 +

∫ T

T0

cp(p0, T̃ )

T̃
dT̃ . (2.3.6)

This also implies that for incompressible flows the specific heats are equal,

cv = T

(
∂s

∂T

)

v

= cp. (2.3.7)

Summarizing, given αp, βT and cp, the entropy can be expressed as a function of

pressure and temperature or only temperature for the incompressible case. Given the

general expression for the entropy (2.3.5), all other thermodynamic variables can be

determined in terms of αp, βT and cp, with the independent variables p and T.

Next, we show that when there is a phase change, the limit is still valid [41]. Assume

that αp and βT are constant in a range [T0, T ] and [p0, p], with αp(p, T ) u ᾱp and

βT (p, T ) u β̄T . Then,

exp

(
∫ T

T0

αp(p0, T̃ )dT̃ −
∫ p̃

p0

βT (p̂, T )dp̂

)

dp̃ u exp
(
ᾱp(T − T0) − β̄T (p̃− p0)

)
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2.3. General equation of state

and

∫ p

p0

αp(p̃, T ) exp

(
∫ T

T0

αp(p0, T̃ )dT̃ −
∫ p̃

p0

βT (p̂, T )dp̂

)

dp̃

u

∫ p

p0

ᾱp exp
(
ᾱp(T − T0) − β̄T (p̃− p0)

)
dp̃

=

(

− ᾱp

β̄T
exp

(
ᾱp(T − T0) − β̄T (p̃− p0)

)
)∣
∣
∣
∣

p

p̃=p0

=
ᾱp

β̄T
exp(ᾱp(T − T0))[1 − exp(−β̄T (p− p0))].

Hence, in this temperature and pressure range, the entropy is equal to:

s(p, T ) = s0 +

∫ T

T0

cp(p0, T̃ )

T̃
dT̃

− v0
ᾱp

β̄T
exp(ᾱp(T − T0))[1 − exp(−β̄T (p− p0))].

Note that if this range is the incompressibility regime, that is αp → 0 and βT → 0,

then, using

lim
β̄T →0

1 − exp(−β̄T (p− p0))

β̄T
= p− p0,

we obtain

lim
β̄T→0

s(p, T ) = sinc(T ).

The next important remark shows that the limit αp → 0 and βT → 0 is reached in

a certain way. Recall the thermodynamic relation between the specific heats (2.2.34)

derived in Section 2.2, valid for any type of material. In the incompressible limit,

cp = cv, therefore, for αp = 0 and βT = 0, we have

α2
pvT

βT
= 0. (2.3.8)

Since v and T are bounded, the above relation is only possible when O(α2
p) = O

(
β1+ε

T

)

for ε > 0, as βT → 0. Equivalently,

O(αp) = O(βδ
T ), with δ =

1

2
+
ε

2
, ε > 0. (2.3.9)

We conclude that the limiting behavior of αp → 0 and βT → 0 must satisfy (2.3.9),

hence the the limit of the two incompressibility parameters is not independent from

each other.
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Chapter 2. Background and physics

2.4 Equations of state

Since the numerical algorithm discussed in this thesis has its roots also in compressible

flows and to indicate its wide range of applicability, we discuss now several equations

of state, both for gases and substances undergoing phase change. A detailed overview

of equations of state can be found in [49].

The most frequently used thermal equation of state (EOS) is the perfect gas equation

of state, in which the volume occupied by the molecules is negligible and in which the

intermolecular forces are not taken into account. The perfect gas EOS is, however,

not applicable in all conditions. For a gas at conditions of high pressure (≈ 1000 atm),

where intermolecular forces can no longer be neglected, it means that a real gas EOS

should be used.

In Section 2.2, we saw that knowing the fundamental equation is equivalent to knowing

the equations of state of a substance. In the next sections we give some examples of

this equivalence for both perfect and real gases.

2.4.1 The perfect gas

At room temperature air is essentially a calorically perfect gas. It remains so until

the temperature reaches approximately 600K. Then, if temperature increases further,

vibrational excitation becomes important, and air behaves as a thermally perfect gas.

Above 200K, chemical reactions occur and air becomes a chemically reacting mixture

of perfect gases.

The fundamental equation for a perfect gas with the assumption of a constant specific

heat cv , is

s = s0 + cv ln
e

e0
−R ln

v0
v

(2.4.1)

where v0 and e0 correspond to a reference state and R is the gas constant. Then, by

definition the EOS2 (2.2.13) has the explicit form

EOS2 : pv = RT. (2.4.2)

Since cv is assumed to be constant, from (2.4.1) and the definition of EOS1 (2.2.12)

we obtain
1

T
=

(
∂s

∂e

)

v

=
cv
e

=⇒ e = cvT.

Consequently, at constant temperature, the internal energy of a perfect gas is inde-

pendent of the specific volume. It is independent of the pressure also, since

(
∂e

∂p

)

T

=

(
∂e

∂v

)

T

(
∂v

∂p

)

T

= 0.
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2.4. Equations of state

The internal energy of a perfect gas is therefore a function of its temperature only

when cv is constant.

Using (2.2.15) and (2.4.2), we obtain αp = 1/T, βT = 1/p and combined with (2.2.34)

this means that R = cp − cv. The above relations imply pv = (γ − 1)e, which is

the ideal gas equation of state, where γ = cp/cv. Furthermore, the entropy in the

fundamental equation (2.4.1) can be written as

s = cv ln

(
p

ργ

)

+ s0 − cv ln e0 + cv ln

(

ργ−1
0

γ − 1

)

(2.4.3)

where we denote the underlined coefficient by s0. The chemical potential µ̃, is

µ̃(p, T ) = cvT +RT − s0T + cvT ln

(
p

ργ

)

. (2.4.4)

Note that, in the remainder of this thesis the reference values for e0, ρ0, s0, etc. are

not necessarily always the same. This prevents extensive relations for the coefficients.

2.4.2 Real gas

In practice, a gas behaves as a real gas under conditions of high pressure and moderate

temperature, conditions which show the influence of intermolecular forces on the

thermodynamics state of the system. The most familiar real gas thermal EOS are the

Clausius and the van der Waals equations.

In this section we proceed reversely compared to the previous section. Given the EOS

of a substance, we determine the fundamental equation.

Co-volume equation of state. First, we consider the generalization of the perfect

gas EOS, the so-called Clausius or co-volume equation of state

p(v − b) = RT (2.4.5)

where b is called the co-volume. Let us find the fundamental equation for this equation

of state. Using (2.2.15), we obtain

αp =
v − b

Tv
, βT =

(v − b)2

vRT
. (2.4.6)

From (2.2.34) it follows that cp − cv = R. Differentiating (2.2.29) with respect to T at

constant volume and (2.2.31) with respect to v at constant T, and equating the two

results yields

(
∂cv
∂v

)

T

= T

(
∂2p

∂T 2

)

v

= T

(
∂

∂T

(
αp

βT

))

v

= T

(
∂

∂T

(
R

v − b

))

v

= 0. (2.4.7)
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This means that cv is a function of T only, i.e., cv = cv(T ). By combining (2.2.32)

with (2.4.6), we obtain from (2.4.5) that
(

∂e
∂v

)

T
= 0. Hence, e = e(T ). From (2.2.31)

it follows that

e(T ) =

∫ T

T0

cv(T̃ )dT̃ + e0 (2.4.8)

where e0 is the internal energy at T0. Assume that cv is constant. Then, e = cvT +e0.

Using again (2.2.31), the specific entropy has the form

s = s0 + cv lnT + g(v) (2.4.9)

where s0 is a reference entropy and g(v) is a function depending only on the volume v.

This function g can be uniquely determined, up to a constant, by solving the following

ordinary differential equation obtained from (2.2.29):

d

dv
g(v) =

R

v − b
. (2.4.10)

Therefore, the entropy (or the fundamental equation for a real gas) can be calculated

as

s = s0 + cv lnT +R ln(v − b). (2.4.11)

Now we have all variables to calculate the chemical potential µ̃ using Euler’s equation

(2.2.14) which yields:

µ̃(p, T ) = e0 + cvT + pb+RT − T

(

s0 + cv lnT +R ln
RT

p

)

. (2.4.12)

Van der Waals equation of state. The second equation of state which we consider

is the van der Waals equation

p =
RT

v − b
− a

v2
(2.4.13)

where the term a/v2 is a correction that accounts for the intermolecular forces of

attraction. The compressibility coefficients have the following values

αp =
(v − b)v2R

v3RT − 2a(v − b)2
, βT =

(v − b)2v2

v3RT − 2a(v − b)2
. (2.4.14)

The difference between the specific heats follows from (2.2.34):

cp − cv =
v3R2T

v3RT − 2a(v − b)2
,

and from (2.2.32) we obtain
(
∂e

∂v

)

T

=
a

v2
. (2.4.15)
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Let us consider the specific internal energy expressed in terms of the independent

variables T and v. Then,

de =

(
∂e

∂T

)

v

dT +

(
∂e

∂v

)

T

dv. (2.4.16)

Inserting (2.4.15) and the definition of cv in (2.4.16), we obtain

de = cvdT +
a

v2
dv

and after integration,

e = e0 +

∫ T

T0

cv(T̃ )dT̃ + a

(
1

v0
− 1

v

)

where e0 = e(T0, v0) is the specific internal energy at a reference temperature T0 and

a reference specific volume v0.

Next, we determine the specific entropy for constant cv . Consider s = s(v, T ). The

total differential of s is

ds =

(
∂s

∂v

)

T

dv +

(
∂s

∂T

)

v

dT.

Inserting (2.4.16) in the FDE and using (2.2.31) and (2.4.15) we obtain

ds =
1

T
cvdT +

1

T

( a

v2
+ p
)

dv.

Comparing the coefficients in the two relations above, we conclude that

(
∂s

∂T

)

v

=
1

T
cv ⇒ s = cv lnT + g1(v)

and (
∂s

∂v

)

T

=
1

T

( a

v2
+ p
)

=
R

v − b
⇒ s = R ln(v − b) + g2(T ).

Combining both relations we obtain

s = s0 + cv lnT +R ln(v − b) + g1(v) + g2(T ) (2.4.17)

where s0 is the entropy at the reference temperature T0 and specific volume v0. Using

(2.2.29), it follows that
(
∂s

∂v

)

T

=
αp

βT
=

R

v − b
.

On the other hand, from (2.4.17) we have

(
∂s

∂v

)

T

=
R

v − b
+
∂g1(v)

∂v
.
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Chapter 2. Background and physics

Therefore, g1(v) = constant. Similarly, we obtain that g2(T ) = constant, and conse-

quently,

s = s0 + cv lnT +R ln(v − b) (2.4.18)

for some s0. Finally, the chemical potential for the van der Waals equation can be

expressed as

µ̃ = e0 + cvT − a

v
+ pv − T

(

s0 + cv lnT +R ln(v − b)
)

. (2.4.19)

Remark 2.4.1 In Appendix A some measured values of the volume expansivity and

isothermal compressibility are listed for several substances.

2.5 Concluding remarks

In this chapter we summarized the basic thermodynamic concepts that are needed

to study the incompressible limit. We proposed a general form of the fundamen-

tal equation that can be used for both compressible and incompressible flows. The

thermodynamic state of a single species material is determined by three measurable

quantities, αp, βT and cp (or cv).
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Chapter 3

A unified formulation of the

Navier-Stokes equations

Over the past decades a large variety of numerical schemes has been developed for the

Navier-Stokes equations, but there has not been much synergy between the different

approaches for compressible and incompressible flows. Many of the ideas developed

in one field can, however, be useful in other fields. An example is the concept of

symmetrized equations using entropy variables in compressible flow, investigated by

Godunov [18], Mock [43], Harten [21], Hughes et al. [30], Dutt [12] and Johnson et al.

[37]. One of the key benefits is that the use of the symmetrized compressible Navier-

Stokes equations using the entropy variables, results in a global entropy stability which

is automatically inherited by the numerical discretization, see for instance Shakib et

al. [51]. This is not true when for instance conservative or primitive variables are

used. For a comparative study of different sets of variables for solving compressible

and incompressible flows we refer to the work of Hauke and Hughes [23]. For a detailed

analysis of the entropy stability of the symmetrized Navier-Stokes equations see Barth

[3] and Section 5.5 of this thesis. The use of entropy variables is also important for

weakly compressible flows, in particular when one is interested in the proper limiting

behavior of the compressible Navier-Stokes equations in the incompressible limit,

discussed in details in Chapter 5 of this thesis.

In [23] Hauke and Hughes demonstrated that, with the proper choice of variables,

it is possible to obtain a symmetrized formulation of the Navier-Stokes equations

which is valid both for compressible and incompressible flows and does not result in

a singular limit for incompressible flow. Therefore, this makes it possible to use the

same set of variables for the whole spectrum of flows and to obtain a unified numerical

discretization, valid in both the compressible and incompressible flow regime, and this

is the main topic of this chapter.
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Chapter 3. A unified formulation of the Navier-Stokes equations

3.1 Compressible flow governing equations

As starting point we discuss in this section the governing equations for compressible

flows in three space dimensions. Fluids obey the general laws of mechanics, namely,

conservation of mass, momentum and energy. In the Eulerian representation of the

flow ρ = ρ(t, x) is the density at x = (x1, x2, x3) at time t, and u = u(t, x), u =

(u1, u2, u3) is the velocity of a fluid particle at position x at time t. Then, conservation

of mass is expressed by the continuity equation

∂ρ

∂t
+ div(ρu) = 0. (3.1.1)

The conservation of momentum in a continuous medium can be expressed as

ρai =

3∑

j=1

∂σij

∂xj
+ fi, i = 1, 2, 3, (3.1.2)

where a = a(t, x), a = (a1, a2, a3) is the acceleration vector of the particle x at time

t, f = (f1, f2, f3) represents the volume forces applied to the fluid and σ = σ(t, x) the

Cauchy stress tensor at position x at time t. The acceleration vector of the particle

is expressed as

a =
∂u

∂t
+ uj

∂u

∂xj
or ai =

∂ui

∂t
+

3∑

j=1

uj
∂ui

∂xj
, i = 1, 2, 3. (3.1.3)

Introduce here the operator D/Dt, representing the time derivative following the par-

ticle, usually called material derivative, and if ϕ(t, x) is a scalar valued function, then

it is defined as
Dϕ

Dt
=
∂ϕ

∂t
+ uj

∂ϕ

∂xj
.

Consequently, a = Du/Dt. In the case of a Newtonian fluid the stress tensor is ex-

pressed in terms of the velocity and the pressure p = p(t, x) as

σij = µ

(
∂ui

∂xj
+
∂uj

∂xi

)

+

(

λ
3∑

i=1

∂ui

∂xi
− p

)

δij (3.1.4)

where δij is the Kronecker delta symbol and for the viscosity coefficients µ > 0, λ > 0

the Stokes hypothesis is assumed, that is λ = −2µ/3. The equations (3.1.1) and (3.1.2)

are the general Navier-Stokes equations for Newtonian compressible fluids in Eulerian

representation (see [39]). For a compressible fluid the equations for conservation of

mass and momentum are supplemented by an independent equation expressing the

conservation of energy.

The energy balance in a compressible fluid is determined by the internal energy,

the conduction of heat, the convection of heat with the flow, the generation of heat
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3.1. Compressible flow governing equations

through friction and the expansion (or compression) work. The energy balance can

be established on the basis of the First Law of Thermodynamics (see Section 2.1).

Assuming Stokes’ hypothesis, the energy equation can be written in the form

ρcv
DT

Dt
+ p divu =

3∑

i=1

∂

∂xi

(

κ
∂T

∂xi

)

+ µΦ (3.1.5)

where κ is the coefficient of thermal conductivity. The dissipation function Φ in (3.1.5)

is defined as

Φ = 2

[(
∂u1

∂x1

)2

+

(
∂u2

∂x2

)2

+

(
∂u3

∂x3

)2
]

+

(
∂u1

∂x2
+
∂u2

∂x1

)2

+

(
∂u1

∂x3
+
∂u3

∂x1

)2

+

(
∂u2

∂x3
+
∂u3

∂x2

)2

− 2

3

(
3∑

i=1

∂ui

∂xi

)2

. (3.1.6)

For further details on the energy equation we refer to [47].

In the remainder of this thesis, we call the five equations representing conservation

of mass, momentum and energy of a compressible fluid the three-dimensional com-

pressible Navier-Stokes equations. The compressible Navier-Stokes equations can be

written in conservative form as

U,t + F a
i,i = F d

i,i , for i = 1, 2, 3, (3.1.7)

where U ∈ R5 is the vector of conservative variables, and F a
i , F

d
i ∈ R5 are, respec-

tively, the advective and diffusive fluxes in the ith Cartesian coordinate direction,

which are defined as:

U =










ρ

ρu1

ρu2

ρu3

ρetot










, F a
i = ρui










1

u1

u2

u3

etot










+ p










0

δ1i

δ2i

δ3i

ui










, F d
i =










0

τ1i

τ2i

τ3i

τijuj










+










0

0

0

0

−qi










. (3.1.8)

In the above expressions, etot denotes the total energy, δij the Kronecker delta sym-

bol, τ = [τij ] the viscous-stress tensor, and q = (q1, q2, q3)
T the heat-flux vector.

An inferior comma represents partial differentiation (e.g. U,t = ∂U/∂t, the partial

derivative with respect to time and U,i = ∂U/∂xi) and the summation convention on

repeated indices is used. It is useful to rewrite (3.1.7) in quasi-linear form:

U,t +Ai(U)U,i = (Kij(U)U,j),i, (3.1.9)

where Ai(U) = Fi,U and Kij(U)U,j = F d
i .

The compressible Navier-Stokes equations written in terms of the conservative vari-

ables are not suitable for an energy stability analysis, since the inviscid flux Jacobian
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Chapter 3. A unified formulation of the Navier-Stokes equations

matrices are not symmetric and the viscosity matrices are neither symmetric nor pos-

itive semi-definite. In addition, the incompressible limit of these equations is singular,

hence, the equations are not a good starting point for a unified approach suitable for

both compressible and incompressible flows.

A more general approach is demonstrated by Hauke and Hughes [23] using entropy

variables. In the next section we discuss this approach in detail.

3.2 Symmetrizing variables

Consider the independent state variables p and T and Euler’s equation for the chemical

potential

µ̃(p, T ) = e+ p/ρ− Ts. (3.2.1)

The system (3.1.9) can be symmetrized by introducing a new set of variables, the

so-called entropy variables:

V =










V1

V2

V3

V4

V5










=
1

T










µ̃− |u|2/2
u1

u2

u3

−1










. (3.2.2)

In terms of entropy variables (3.1.9) has the form:

Ã0(V )V,t + Ãi(V )V,i = (K̃ij(V )V,j),i, (3.2.3)

with Ã0 = U,V , Ãi = AiÃ0 and K̃ij = KijÃ0. There are two important features

which characterize this form of the equations. One is that the coefficient matrices

have the properties:

• Ã0 is symmetric positive definite,

• Ãi is symmetric for i = 1, 2, 3,

• K = [K̃ij ] is symmetric (i.e., K̃ij = K̃T
ji) and positive semidefinite.

We summarize in Appendix B.1 the complete set of Jacobian matrices Ãi and K̃ij

for the entropy variables in terms of the volume expansivity αp, the isothermal com-

pressibility βT and specific heat at constant pressure cp. These three variables can be

measured experimentally and in Section 2.3 we demonstrated that the fundamental

equation for a single substance can be expressed by these three quantities together

with the independent thermodynamic variables, e.g. p and T. All other thermody-

namic quantities, such as cv, e, etc. can be derived from them, but are used in the

Jacobian matrices to keep the notation concise.
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3.3. The incompressible limit

Secondly, the Galerkin least-squares method based on this form of the compressible

Navier-Stokes equations satisfies the Clausius-Duhem inequality or entropy condition,

which results in the basic non-linear stability condition for the Navier-Stokes equa-

tions, discussed in details in Section 5.5 of this thesis, or see e.g. Shakib et al. [51]

and Barth [3].

Remark 3.2.1 The Jacobian matrices Ai(U), i = 1, 2, 3 can be determined explicitly

only if the fluid constitutive relations (equations of state) are specified.

Remark 3.2.2 The expression for the relations between the entropy and conservative

variables, i.e., the mappings U → V and V → U, requires an explicit formulation

of the equations of state. We give these mappings in the next sections for various

equations of state.

3.3 The incompressible limit

In this section we consider the incompressible limit of the symmetrized compressible

Navier-Stokes equations in the formulation with the Jacobians expressed in terms of

αp, βT and cp, see Appendix B.1. We also establish the link with the standard formu-

lation of the incompressible Navier-Stokes equations and the temperature equation.

The incompressible limit of the symmetrized Navier-Stokes equations is obtained when

the volume expansivity αp and the isothermal compressibility βT approach zero. Note

that the compressibility of the fluid is defined by two variables instead of only one,

the Mach number, as is frequently assumed. Hauke and Hughes [23] demonstrate

that using either the entropy variables V or the primitive variables Y = (p, u, T )T

results in a well defined incompressible limit, but only the entropy variables provide

a formulation which satisfies the entropy condition. Any formulation containing the

density, e.g. (ρ, u, T ), does not have a proper incompressible limit since the coefficients

in the matrices Ai either become undefined or infinitely large. Note here that the

variable Y also plays an important role in our analysis of the Galerkin least-squares

stabilization operator in later chapters.

The symmetrized incompressible Navier-Stokes equations are obtained by setting αp

and βT equal to zero in the flux Jacobian matrices in (3.2.3). The Jacobian matrices

Ãi, i = 0, . . . , 3, given in Appendix B.1, when αp = 0 and βT = 0, take the following

form:

Ã0 = ρT










0 0 0 0 0

0 1 0 0 u1

0 0 1 0 u2

0 0 0 1 u3

0 u1 u2 u3 r









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Ã1 = ρT










0 1 0 0 u1

1 3u1 u2 u3 2u2
1 + e1

0 u2 u1 0 2u1u2

0 u3 0 u1 2u1u3

u1 2u2
1 + e1 2u1u2 2u1u3 u1(r + 2e1)










Ã2 = ρT










0 0 1 0 u2

0 u2 u1 0 2u1u2

1 u1 3u2 u3 2u2
2 + e1

0 0 u3 u2 2u2u3

u2 2u1u2 2u2
2 + e1 2u2u3 u2(r + 2e1)










Ã3 = ρT










0 0 0 1 u3

0 u3 0 u1 2u1u3

0 0 u3 u2 2u2u3

1 u1 u2 3u3 2u2
3 + e1

u3 2u1u3 2u2u3 2u2
3 + e1 u3(r + 2e1)










with k = |u|2/2, r = 2k + cpT and e1 = h + k. The viscous flux Jacobians K̃ij ,

defined in Appendix B.1, are independent of αp and βT and therefore do not change

in the incompressible limit. Note here that in the incompressible limit Ã0 becomes

positive-semidefinite. We have shown in Section 2.2.1 that when the incompressible

limit is taken, there is only one equation of state, e = cvT, and using the Euler

equation, the fundamental equation s = s0+cv lnT determines the chemical potential

µ̃(p, T ) = cvT + pv− cvT lnT. Therefore, all the entries in the flux Jacobian matrices

are well defined.

Next, we will show that the symmetrized Navier-Stokes equations in the incompress-

ible limit are identical to the incompressible Navier-Stokes equations. To illustrate

the main step to obtain this identity, consider the set of primitive variables Y. First,

we will demonstrate that the transformation matrices V,Y and Y,V are independent

of αp and βT . Consider the independent variables p and T. The total differential of

the first component of the entropy variables V is:

dV1 =
1

T

((
∂µ̃

∂p

)

T

dp+

(
∂µ̃

∂T

)

p

dT − ujduj

)

−V1

T
dT =

1

T

(
1

ρ
dp− h− k

T
dT − ujduj

)

,

where in the last equality we used v = 1/ρ and that the specific volume and entropy

can be expressed in terms of the derivatives of the chemical potential as

v =

(
∂µ̃

∂p

)

T

, s = −
(
∂µ̃

∂T

)

p

. (3.3.1)
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3.3. The incompressible limit

Furthermore, we obtain the following transformation for the total differential of all

the components of the entropy variables:

dV =
1

T










1
ρdp− h−k

T dT − ujduj

du1 − V2dT

du2 − V3dT

du3 − V4dT

−V5dT










. (3.3.2)

If we assume the Stokes hypothesis, viz. λ = −2/3µ, where λ and µ are the viscosity

coefficients, and introduce the transformation (3.3.2) into (3.2.3), we obtain after

some lengthy algebra the following set of equations:

• The continuity equation:

ui,i = 0, i = 1, 2, 3. (3.3.3)

• The momentum equations:

ui,t + ujui,j = −1

ρ
p,i + (νsij),j , i, j = 1, 2, 3, (3.3.4)

with ν(T ) = µ(T )/ρ the kinematic viscosity, and sij = ui,j +uj,i the shear stress

tensor. Equations (3.3.3)-(3.3.4) are exactly the incompressible Navier-Stokes

equations.

• The equation for the temperature field is:

T,t + uiT,i =
µ

ρcp

3∑

i,j=1

1

2
s2ij +

1

ρcp
(κT,i),i. (3.3.5)

Remark 3.3.1 This set of equations includes thermally coupled and isothermal in-

compressible flows. Thermally coupled incompressible flows are obtained by allowing

the viscosity to depend on temperature. Isothermal incompressible flows can be ob-

tained by specifying a constant viscosity.

Observe that in the energy equation for compressible flows (3.1.5) the term due to

the work of expansion (or compression), that is p divu, vanishes for incompressible

flows. Furthermore, inserting divu = 0 in the dissipation function Φ in (3.1.6), we

obtain for the energy equation exactly (3.3.5).

The symmetrized compressible Navier-Stokes equations in the incompressible limit are

therefore identical to the incompressible Navier-Stokes equations and the temperature

equation.
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Chapter 3. A unified formulation of the Navier-Stokes equations

We compare now the “classical” definition of incompressibility with the incompress-

ibility introduced by setting αp = 0 and βT = 0. Incompressibility is usually expressed

by the condition

ui,i = 0. (3.3.6)

Therefore, the equation expressing the conservation of mass (3.1.1) reduces to

Dρ

Dt
=
∂ρ

∂t
+ u · ∇ρ = 0, (3.3.7)

that is, an incompressible fluid is characterized by constant density along the stream-

lines.

In terms of primitive variables Y, the mass conservation equation can be expressed as

ρβT (p,t + uip,i) − ραp(T,t + uiT,i) + ρui,i = 0.

In the incompressible limit, that is when αp = 0 and βT = 0, we obtain the in-

compressibility constraint (3.3.6). Similarly, for entropy variables, when αp = 0 and

βT = 0, the mass conservation equation reduces to

ρT

(
∂Vi+1

∂xi
+ ui

∂V5

∂xi

)

= 0,

which is equivalent to (3.3.6). The assumption that for an incompressible fluid the

density is constant is equivalent to αp = 0 and βT = 0. This equivalence follows from

the definitions of αp and βT .

3.3.1 Discussion on the Equation of State

The quasi-linear form of the Navier-Stokes equations, both in the conservative (3.1.9)

and symmetrizing variables (3.2.3) depends on the equation of state. When the equa-

tions of state are given, all thermodynamic variables, including αp, βT , cp and all

entries of the flux Jacobian matrices, can be determined.

When the compressible Navier-Stokes equations are considered, different equations of

state can be defined, which determine uniquely the quasi-linear form of the system

both for the conservative and entropy variables. When the flow is incompressible,

there is only one equation of state. Therefore, in the incompressible limit the com-

pressible equations of state are no longer valid since they do not show in general the

proper limiting behavior. This can be seen in the following examples.

When an ideal gas equation of state is assumed, viz. pv = RT , with R the gas

constant, then the volume expansivity αp and the isothermal compressibility βT are

equal to:

αp =
1

T
, βT =

1

p
, (3.3.8)
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3.4. Symmetrization using entropy variables

which results in an unbounded pressure and temperature in the incompressible limit.

Consequently, the ideal gas law cannot be used in the incompressible limit.

Next, consider the co-volume EOS, viz. p(v− b) = RT. The incompressibility param-

eters are then

αp =
v − b

Tv
, βT =

(v − b)2

vRT
. (3.3.9)

The incompressible limit is obtained by taking αp → 0 and βT → 0, or equivalently,

v → b. This limit leads again to an unbounded pressure when combined with the

co-volume EOS. Furthermore, from (2.2.34) it follows that cp − cv = R, whereas in

(2.2.39) we have shown that in the incompressible limit cp = cv .

As a last example, consider the van der Waals equation of state (2.4.13). From

(2.4.14), it follows that the incompressible limit is equivalent with v → b or v → 0.

In the limit v → b we obtain cp − cv = R, which again violates the condition cp = cv
in the incompressible limit. The limit v → 0 is also not applicable, since it results in

the unphysical limit ρ→ ∞.

From this discussion, in combination with the results of Section 2.2.1, we conclude

that none of the perfect or real gas assumptions are valid in the incompressible limit

and in case of nearly incompressible flow it is important to use the proper measured

equation of state for the specific substance, for an overview see [49], instead of idealized

equations of state such as the ideal gas and van der Waals equations of state.

3.4 Symmetrization using entropy variables

In this section we give some examples of mappings from conservative to entropy

variables and reversely, when various equations of state are used.

Ideal gas EOS. A detailed analysis of the entropy variables for the compressible

Euler and Navier-Stokes equations, when combined with the ideal gas EOS is given

in [51].

Co-volume EOS. Given the co-volume equation of state (2.4.5), the mappings

U 7→ V and V 7→ U can be defined as follows. Use the relation for the internal energy

e = cvT and

U5 = ρetot = ρe+ ρk

where k = |u|2/2 = (U2
2 + U2

3 + U2
4 )/2U2

1 . The temperature T then can be expressed

in terms of the conservative variables as

T =
1

cv

(
U5

U1
− k

)

.
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Chapter 3. A unified formulation of the Navier-Stokes equations

Furthermore,

p =
RT

v − b
=
R(U5 − kU1)

cv(1 − b U1)
, h = e+ pv =

(U5 − kU1)(cp − cvb U1)

cvU1(1 − b U1)

The entropy variables can be expressed using the conservative variables and the ex-

pression for the chemical potential µ̃ (2.4.12) as follows:

V1 =
cp − bcvU1

1 − bU1
− cv ln

(
U5 − kU1

cvU1

)

+R ln

(
1

U1
− b

)

− cvkU1

U5 − kU1
,

V2 =
u1

T
=

cvU2

U5 − kU1
,

V3 =
u2

T
=

cvU3

U5 − kU1
,

V4 =
u3

T
=

cvU4

U5 − kU1
,

V5 = − 1

T
= − cvU1

U5 − kU1
.

The inverse mapping V 7→ U can be defined as well. First, we need to express the

pressure in terms of the entropy variables. The chemical potential µ̃, can be written

as

µ̃ = −V1

V5
+ k(V ) (3.4.1)

where k(V ) = k = (V 2
2 + V 2

3 + V 2
4 )/2V 2

5 . Introducing the Euler equation for the

chemical potential (2.2.14) into (3.4.1), we obtain

cpT − cpT lnT − TR lnR+ pb+ TR ln p = V1T + k(V ) (3.4.2)

where T = −1/V5 and cp − cv = R. To simplify the notations, we rewrite (3.4.2) as

pb+RT ln p+ A = 0 (3.4.3)

where A = cpT − cpT lnT −RT lnR− V1T − k(V ). Since p in (3.4.3) is only defined

implicitly, we use for an explicit expression of p a series expansion with respect to the

variable b about the point b = 0, up to order 4 :

p = e−
A

RT



1 − e−
A

RT

RT
b+

3

2

(

e−
A

RT

RT

)2

b2 − 8

3

(

e−
A

RT

RT

)3

b3 + o(b4)



 .

The motivation for the series expansion about b = 0 is that for b sufficiently small,

we obtain in the co-volume EOS an approximation of the pressure for an ideal gas.

Finally, introducing T = −1/V5 into the series expansion of the pressure, we obtain
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3.4. Symmetrization using entropy variables

p = p(V ). The conservative variables in terms of the entropy variables are approxi-

mated as:

U1 u
p(V )V5

p(V )V5b−R
,

U2 = −U1V2

V5
u − p(V )V2

p(V )V5b−R
,

U3 = −U1V3

V5
u − p(V )V3

p(V )V5b−R
,

U4 = −U1V4

V5
u − p(V )V4

p(V )V5b−R
,

U5 = U1

(

k − cv
V5

)

u
p(V )(kV5 − cv)

p(V )V5b−R
.

The van der Waals EOS. Given the van der Waals equation of state, the mappings

U 7→ V and V 7→ U can be defined. The explicit definition of V (U) when the van der

Waals equation of state is considered is identical to the expression for the co-volume

EOS, except V1(U). Using

p =
RT

v − b
=
R(U5 − kU1)

cv(1 − b U1)
− aU2

1 , h = e+ pv =
(U5 − kU1)(cp − cvb U1)

cvU1(1 − b U1)
− aU1

we can express the chemical potential µ̃ in (2.4.19) in terms of the conservative vari-

ables U. We have now all the terms necessary to express V1(U) as

V1 =
cp − bcvU1

1 − bU1
− cv ln

(
U5 − kU1

cvU1

)

+R ln

(
1

U1
− b

)

− cvU1(k + aU1)

U5 − kU1
.

The explicit expression for the inverse mapping, that is U(V ), becomes complicated

when the van der Waals EOS is used. Therefore, we do not consider it in this thesis.

Note however, that these expressions can be obtained similarly as we obtained them

when the co-volume EOS was used.

Remark 3.4.1 The incompressible limit is well defined for entropy variables but not

for conservation variables. Therefore, the mappings U 7→ V and V 7→ U are not

defined in the incompressible case. Instead we use the mappings Y 7→ V and V 7→ Y,

where Y = (p, u1, u2, u3, T )T .

Remark 3.4.2 The expression for U(V ) becomes very cumbersome for more compli-

cated, general equations of state, but they are only needed for postprocessing the data

of the simulation.
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Chapter 3. A unified formulation of the Navier-Stokes equations

3.5 Dimensionless form of the equations

for incompressible flow

In this section the governing incompressible Navier-Stokes equations are given in their

dimensionless form. First, consider the incompressible Navier-Stokes equations and

the temperature equation, using primitive variables, in dimensional form and assume

that the viscosity is constant:

ui,i = 0

ρ (ui,t + ujui,j) = −p,i + µsij, j , i = 1, 2, 3 (3.5.1)

ρcp (T,t + uiT,i) = µ

3∑

i,j=1

1

2
s2ij + κT,ii. (3.5.2)

The magnitudes of the dimensional quantities that are used to express the incom-

pressible Navier-Stokes equations can be given using four fundamental magnitudes:

mass M, length L, time τ, and temperature Θ, see Table 3.1. According to Buck-

ingham’s Pi theorem, the dimensionless form of the equations is obtained using four

reference values which form an independent (or recurrent) set. Our choice is the set

{ρr, |u|r, L,∆T}, where reference values are denoted by r and ∆T = Tw − T∞ is the

temperature difference between the wall and some other location in the fluid. The

flow field is defined by the following (nine) dimensional quantities: ρr, ur, L, ∆T, µr,

κr, cpr, and their dimensions are summarized in Table 3.1.

Introduce the dimensionless variables, denoted by a star:

x?
i =

xi

L
t? =

t

L/|u|r
p? =

p

ρr|u|2r
u?

i =
ui

|u|r
(3.5.3)

ρ? =
ρ

ρr
µ? =

µ

µr
κ? =

κ

κr
c?p =

cp
cpr

. (3.5.4)

The temperature will be made dimensionless with reference to the temperature dif-

ference ∆T = Tw − T∞ between the wall and some other location in the fluid, thus

T ? =
T

∆T
.

It is important to note that the system of equations contains four fundamental mag-

nitudes and nine dimensional variables define the flow field, therefore, according to

the Pi theorem of Buckingham five dimensionless Pi groups can be formed.

Because of the choice of the recurrent set, the reference values for the viscosity µr,

specific heat at constant pressure cpr and the heat conductivity κr are still left to be

defined.
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3.5. Dimensionless form of the equations

for incompressible flow

Quantity Symbol Dimension made dimensionless

mass m M ρrL
3

length xi L L

time t τ L/|u|r
temperature T Θ Tr

density ρ ML−1 ρr

velocities ui Lτ−1 |u|r
pressure p ML−1τ−2 ρr|u|2r
viscosity µ ML−1τ−1 ρr|u|rL/Re

specific heat at constant volume cv L2τ−2Θ−1 |u|2r/(Tr Ec)

specific heat at constant pressure cp L2τ−2Θ−1 |u|2r/(Tr Ec)

thermal conductivity κ MLτ−3Θ−1 ρr|u|3rL/(Tr RePrEc)

Table 3.1: Physical quantities, their symbol, dimension and non-dimensionalization

using the recurrent set {ρr, |u|r, L,∆T},

Introducing the dimensionless quantities into the system (3.5.1-3.5.2), we obtain the

dimensionless incompressible Navier-Stokes equations:

ρ?

(

∂u?
i

∂t?
+ u?

j

∂u?
i

∂x?
j

)

= −∂p?

∂x?
i

+
µr

ρr|u|rL
µ?

(
∂2u?

i

∂x?2
1

+
∂2u?

i

∂x?2
2

+
∂2u?

i

∂x?2
3

)

(3.5.5)

ρ?c?p

(
∂T ?

∂t?
+ u?

i

∂T ?

∂x?
i

)

=
µr|u|r

ρrcprL∆T
µ?

3∑

i,j=1

1

2
s?2

ij +
κr

ρr|u|rLcpr

κ? ∂
2T ?

∂x?2
i

. (3.5.6)

Define the following dimensionless numbers:

• Reynolds number: Re =
ρr|u|rL
µr

• Prandtl number: Pr =
µrcpr

κr

• Eckert number: Ec =
|u|2r

cpr∆T
.

The flow parameters can now be expressed in terms of the five dimensionless Pi

groups: Re, Pr, Ec, the flow angles α and β, and the recurrent set of reference values

{ρr, |u|r, L,∆T} :

ur = |u|r(cosα sinφ, sinβ, sinα)T , with φ = arcsin(sinβ/ cosα)
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Chapter 3. A unified formulation of the Navier-Stokes equations

and the reference values for the viscosity µr, specific heat at constant pressure cpr

and the heat conductivity κr can be defined as:

µr =
ρr|u|rL

Re
, cpr =

|u|2r
Ec∆T

, (3.5.7)

and

κr =
µrcpr

Pr
=
ρr|u|rL

Re

|u|2r
Ec∆T

1

Pr
=

ρr|u|3rL
∆TRe Ec Pr

. (3.5.8)

Using these dimensionless Pi groups, it is straightforward to see that the marked

terms in the system (3.5.5-3.5.6) are dimensionless.

Note that when the temperature equation is not included, only three dimensionless

Pi groups, Re, α, β and the recurrent set of reference values ρr, |u|r, L will define the

flow parameters in the momentum equations. By including the temperature equation,

new flow parameters need to be specified, therefore, there is a need for dimensionless

Pi groups that relate these flow parameters. In this way we find the Prandtl and

Eckert numbers.

We shall give now a small overview of the interpretation of the dimensionless numbers.

• The Reynolds number can be interpreted as the ratio between the inertia forces

and viscous forces in a fluid. The Reynolds number is influenced by fluid prop-

erties (viscosity and density), flow conditions (velocity) and geometry (reference

length scale).

• The Prandtl number is the ratio between the viscous and thermal effects and is

a function of fluid properties only. An important interpretation of the Prandtl

number is that it represents the ratio of the relative thickness of the velocity

and thermal boundary layers. When Pr = 1, both boundary layers are of

equal thickness, Pr > 1 shows that momentum transfer is more rapid than heat

transfer.

• The Eckert number is the kinetic energy of the flow relative to the enthalpy

difference in e.g. a boundary layer.

3.6 Dimensionless form of the symmetrized

Navier-Stokes equations

In this section we discuss the non-dimensionalization of the Navier-Stokes equations in

it’s symmetrized form. Let us introduce the recurrent set {ρr, |u|r, L, Tr} as in Section

3.5. The dimensionless variables, marked with a star, are related to the dimensional

variables as in (3.5.3-3.5.4)
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3.6. Dimensionless form of the symmetrized

Navier-Stokes equations

First, we give the non-dimensionalization of the entries of the Jacobian matrices:

α?
p =

αp

Tr
, β?

T = ρr|u|2rβT , k? = k/|u|2r, e?
1 = e1/|u|2r,

and using (3.5.7-3.5.8), we can write the entry r in the flux Jacobian matrices Ãi as

r = 2k + cpT = 2|u|2rk? + cprTrc
?
pT

? = |u|2r
(

2k? +
c?p
Ec
T ?

)

, (3.6.1)

and the entries di, i = 1, 2, 3 in the viscous flux Jacobian matrices K̃ii as

di =
1

3
µu2

i + µ|u|2 + κT = ρr|u|3rL
(

1

3

µ?

Re
u?2

i +
µ?

Re
|u?|2 +

κ?

Re Pr Ec
T ?

)

, (3.6.2)

where we used the same notations for the entries in Ãi and K̃ij as in Appendix B.1.

Observe that introducing (3.6.1) and (3.6.2) into the Jacobian matrices, we obtain

that the dimensionless Jacobian matrices in the Navier-Stokes equations, marked

with a star, have the same functional form as their dimensional counterparts, with

the dimensionless entries

r? = 2k? +
c?p
Ec
T ?, d?

i =
1

3
µ?u?2

i + µ?|u?|2 +
κ?

Pr Ec
T ?

Define the following diagonal matrix

Dr = diag(|u|r, |u|2r, |u|2r, |u|2r, |u|3r). (3.6.3)

Then, the advective flux Jacobian matrices for entropy variables can be made dimen-

sionless using the relations:

Ã0 =
ρrTr

|u|4r
DrÃ

?
0Dr , Ãi =

ρrTr

|u|3r
DrÃ

?
iDr , i = 1, 2, 3. (3.6.4)

Using the derived relations, we obtain

∂

∂t
=

|u|r
L

∂

∂t?
,

∂

∂xi
=

1

L

∂

∂x?
i

, (3.6.5)

and the set of entropy variables can be made dimensionless in the following way

V =
1

TrT ?













|u|2r(µ̃? − 1
2 |u?|2)

|u|ru?
1

|u|ru?
2

|u|ru?
3

−1













=
|u|3r
Tr

D−1
r V ?. (3.6.6)
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For the dimensionless form of the chemical potential we use

s = cv lnT − s0 =
|u|2r

Ec Tr
c?p ln(T ?Tr) − s0 =

|u|2r
Tr

c?p
Ec

lnT ? =
|u|2r
Tr

s?,

with the dimensionless entropy given by

s? =
c?p
Ec

lnT ?,

and where we have chosen the reference entropy value as

s0 =
|u|2r
Tr

c?p
Ec

lnTr.

Therefore, the chemical potential can be made dimensionless using

µ̃ = h− Ts = |u|2r (h? − T ?s?) = |u|2r µ̃?

and together with (3.6.4) and

∂V

∂t
=

|u|4r
LTr

D−1
r

∂V ?

∂t?
,

∂V

∂xi
=

|u|3r
LTr

D−1
r

∂V ?

∂x?
i

,

we obtain the following relation between the dimensional and dimensionless forms of

the inviscid part of the Navier-Stokes equations

Ã0
∂V

∂t
+ Ãi

∂V

∂xi
=
ρr

L
Dr

(

Ã?
0

∂V ?

∂t?
+ Ã?

i

∂V ?

∂x?
i

)

. (3.6.7)

For the viscosity matrixes, we obtain using (3.6.2) the following relations

K̃ij =
ρrTrL

|u|3r
1

Re
DrK̃

?
ijDr, i, j = 1, 2, 3, (3.6.8)

therefore,

∂

∂xi

(

K̃ij
∂V

∂xj

)

=
ρr

L
Dr

1

Re

∂

∂x?
i

(

K̃?
ij

∂V ?

∂x?
j

)

. (3.6.9)

The relation between the dimensionless and dimension full forms of the symmetrized

Navier-Stokes equations can then be expressed as

Ã0V,t + ÃiV,i − (K̃ijV,j),i =
ρr

L
Dr

(

Ã?
0V

?
,t? + Ã?

i

∂V ?

∂x?
i

− 1

Re

∂

∂x?
i

(

K̃?
ij

∂V ?

∂x?
j

))

.

(3.6.10)

We can conclude that the dimensional and dimensionless Navier-Stokes equations

have the same functional form. Therefore, the stars can be dropped from the nondi-

mensional equations. Observe that the factor 1/Re can be extracted from the viscous

coefficient matrices and (3.6.10) is obtained.
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Chapter 4

Stabilization operators for the

incompressible Navier-Stokes

equations

One of the main problems in the construction of finite element methods for the incom-

pressible Navier-Stokes equations is to find stable and efficient discretizations which

can deal with convection dominated flows and the incompressibility constraint. The

two main approaches which address these issues are finite elements which satisfy the

Ladyzhenskaya-Babuška-Brezzi (LBB) or inf-sup condition or the use of stabilized

finite element formulations. The first approach results in successful finite element

methods, but in general it is difficult to design elements which satisfy the LBB-

condition. Detailed surveys of this approach can be found in [4, 6, 17, 19, 48]. The

second approach uses stabilized finite element formulations and provides more flexi-

bility in the construction of finite element discretizations. This technique requires,

however, the design of a stabilization operator or the enrichment of the finite element

spaces with special functions, such as bubble functions. Stabilized methods for con-

vection dominated flows were introduced by Brooks and Hughes [8] and since then a

vast amount of literature has been published on this subject.

In this chapter we focus on the design and analysis of a class of stabilization operators

suitable for space-time Galerkin least squares finite element discretizations of the

incompressible limit of a symmetrized formulation of the Navier-Stokes equations

given in [23]. This analysis we also described in [46]. In the incompressible limit

these equations consist of the incompressible Navier-Stokes equations and the heat

equation. The symmetrized formulation presented in [23] and discussed in Chapter 3

is suitable for both the compressible and incompressible Navier-Stokes equations and

is an important step towards unified numerical discretizations suitable for a wide range

of flow conditions. The symmetrization of the Navier-Stokes equations also provides
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equations

a good starting point for finite element discretizations, see [3, 51], and is discussed in

detail in [18, 21, 43]. In an extensive series of papers Hughes and co-workers have used

this approach to develop stabilized finite element methods both for the compressible

and incompressible Navier-Stokes equations, see e.g. [23, 30, 32, 40, 51].

The motivation for the present study is the need for a better understanding of the

mathematical properties of stabilization operators suitable for the incompressible limit

of the symmetrized formulation for the Navier-Stokes equations. In [23] a stabiliza-

tion operator is proposed as a natural extension of previous research on incompressible

flows using primitive variables [13]. The extensions suggested are, however, mainly

based on numerical experiments. A detailed analysis of the properties of the stabiliza-

tion operator and the resulting discretization is missing, in particular for the stability

in the incompressible limit. We will give therefore a consistent mathematical deriva-

tion of a class of stabilization operators suitable for the incompressible limit of the

Navier-Stokes equations in the symmetrized formulation given in [23]. First, we will

use dimensional analysis to determine a class of dimensionally consistent stabiliza-

tion operators and we will show that this class also yields the stabilization operator

suggested in [23].

The second topic of this chapter is to analyze the resulting class of stabilization

operators such that we can ensure that the Galerkin least-squares finite element dis-

cretization results in a stable discretization technique which provides a unique solu-

tion, at least for the locally linearized problem. This analysis is an extension of the

work in [13, 14] to the space-time formulation of the linearized incompressible Navier-

Stokes equations in the symmetrized formulation derived in [23]. This proof provides

additional information on the admissible stabilization operators, ensures positive def-

initeness of the stabilization operator and coercivity of the Galerkin least squares

discretization.

This chapter is organized as follows. We start with a discussion of the symmetrized

formulation of the incompressible Navier-Stokes equations in Section 4.1. The space-

time Galerkin least-squares finite element method for the symmetrized incompressible

Navier-Stokes equations is discussed in Section 4.2. Next, we derive in Section 4.3

a dimensionally consistent stabilization operator for the incompressible limit of the

symmetrized formulation of the Navier-Stokes equations. Finally, in Section 4.4 we

state conditions on a class of stabilization operators which ensures the coercivity of

the Galerkin least-squares finite element discretization for the linearized case. We

conclude with a summary of the main results and some remarks in Section 4.5.

4.1 The governing equations

Consider the incompressible Navier-Stokes equations combined with the heat equa-

tion in a time-dependent flow domain Ω(t), which in the remainder will be denoted
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4.1. The governing equations

incompressible Navier-Stokes equations for brevity. Since the flow domain boundary

is moving and deforming in time, we do not make a separation between the space

and time variables and consider directly the space Rd+1, where d is the number of

space dimensions. Assume that d = 3. Let E ⊂ R4 be an open, bounded space-time

domain. A point x ∈ R4 has coordinates (x0, x1, x2, x3), with x0 = t representing

time. The flow domain Ω(t) ⊂ E at time t is defined as: Ω(t) = {(x1, x2, x3) ∈
R3 | (t, x1, x2, x3) ∈ E}. The space-time domain boundary ∂E consists of the hy-

persurfaces Ω(t0) = {x ∈ ∂E | x0 = t0}, Ω(tN+1) = {x ∈ ∂E | x0 = tN+1}, and

Q = {x ∈ ∂E | t0 < x0 < tN+1}.

Let Y : E 7→ R5 denote the vector of primitive variables (p, u1, u2, u3, T )T and Φ :

R5 7→ R5×4 the flux tensor, with the flux vector in the `th coordinate direction F`,

(` = 0, . . . , 3) given by the columns of Φ, i.e.,

Φ =










ρ ρu1 ρu2 ρu3

ρu1 ρu2
1 + p ρu1u2 ρu1u3

ρu2 ρu1u2 ρu2
2 + p ρu2u3

ρu3 ρu1u3 ρu2u3 ρu2
3 + p

ρE ρu1E + pu1 ρu2E + pu2 ρu3E + pu3










, (4.1.1)

where ρ denotes the density, ui the velocity component in the ith Cartesian coor-

dinate direction, p the pressure and E the total energy. Using these notations, the

incompressible Navier-Stokes equations can be written in conservative form as

F`(Y (x)),` − (Kij(Y (x))Y,j),i = 0, x ∈ E , (4.1.2)

where Kij ∈ R5×5 for i, j = 1, 2, 3 denote the viscous flux Jacobian matrices and the

summation convention is used on repeated indices.

Both for the analysis and construction of the finite element method it is beneficial

to use the entropy variables, which are defined in (3.2.2). The key benefit of the

entropy variables is that they symmetrize the quasi-linear form of (4.1.2), which can

be expressed as

Ã0(V )V,t + Ãi(V )V,i = (K̃ij(V )V,j),i (4.1.3)

where Ã`, (` = 0, . . . , 3) denote the flux Jacobian matrices and K̃ij , (i, j = 1, 2, 3) the

diffusivity coefficient matrices, given for completeness in the Appendix B.1. Recall

from Chapter 3 that these matrices have the following properties: Ã0 is symmetric

positive-semidefinite, Ãi, (i = 1, 2, 3) are symmetric, and K = [K̃ij ] is symmetric

(i.e., K̃ij = K̃T
ji for all i, j = 1, 2, 3) and positive-semidefinite. A detailed analysis of

the benefits of different sets of independent variables for both the compressible and

incompressible Navier-Stokes equations is given in [23].
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equations

4.2 Galerkin least-squares finite element formula-

tion

Consider a partitioning of the time interval I = (t0, tN+1) using the time levels t0 <

t1 < . . . < tN+1.We denote by In = (tn, tn+1) the nth time interval and define a space-

time slab as En = E ∩ In. Each space-time slab En is bounded by the hypersurfaces

Ω(tn), Ω(tn+1) and Qn = ∂En\(Ω(tn)∪Ω(tn+1)). In each space-time slab En we define

a partition T n
h into (ne)n non-overlapping elements Ee

n. The space-time elements Ee
n are

obtained by splitting the spatial domain Ω(tn) into a set of non-overlapping elements

Ωe
n and connecting them with a mapping Φn

t to the elements Ωe
n+1 ⊂ Ω(tn+1) at time

tn+1.

We now introduce some notation. With (·, ·)D we denote the L2 inner product in the

open domain D ⊂ Rd+1. In case of vector arguments, the L2-inner product is defined

as

(·, ·)D : Dm ×Dm −→ R

(V,W )D =

∫

D
W TV dD, for all V,W ∈ Dm

and ‖ · ‖0,D is the corresponding norm in the space L2(D). For a symmetric positive

definite matrix A ∈ Rm×m, define the following inner product and norm respectively,

(·, ·)A,D : Dm ×Dm −→ R

(V,W )A,D =

∫

D
W TAV dD, for all V,W ∈ Dm

and ‖V ‖2
A,D = (V, V )A,D.

The trial function space in each space-time slab En is denoted by V n
h and the test func-

tion space by W n
h . Their elements are assumed to be C0 continuous within each space-

time slab, but discontinuous across the interfaces of the space-time slabs, namely at

times t1, t2, . . . , tN−1. The finite element spaces are now defined as:

V n
h =

{
V ∈ H1(En)5 : V |Ee

n
◦Ge

n ∈
(

P̂1(0, 1) ⊗ P̂k(Ω̂)
)5

, ∀ Ee
n ∈ T n

h ,

∫

En

V1dE = 0, q1(V ) = q̄1 on Qn

}

Wn
h =

{
W ∈ H1(En)5 : W |Ee

n
◦Ge

n ∈
(

P̂1(0, 1) ⊗ P̂k(Ω̂)
)5

, ∀ Ee
n ∈ T n

h ,

∫

En

W1dE = 0, q2(W ) = q̄2 on Qn

}
,
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whereGe
n denotes the mapping from the space-time reference element (0, 1)×Ω̂, with Ω̂

the reference element in R3 (e.g. a tetrahedron, cube or prism) to the element in phys-

ical space Ee
n, and P̂k represent kth-order polynomials. Further, V1,W1 denote the

first component of V,W ∈ R5, respectively, q1 : E5 → R4 are the (nonlinear) bound-

ary conditions for the components V2, V3, V4, and V5 of V , with a similar expression

for q2 : E5 → R4, and q̄1, q̄2 ∈ R4 are the prescribed boundary conditions. Note, not

necessarily all components of V will have imposed boundary conditions, this depends

on the type of boundary condition. If q1(V ) = (V2, V3, V4, V5)
T = (0, 0, 0, 0)T then we

denote V n
h as V n

0h, and analogously, we use W n
0h when q2(W ) = (W2,W3,W4,W5)

T =

(0, 0, 0, 0)T . When the finite element spaces are defined on the whole space time

domain then the superscript n is omitted.

Let us recall the Galerkin least-squares variational formulation for the Navier-Stokes

equations in terms of the entropy variables:

Within each space-time slab En, find a V ∈ V n
h , such that for all W ∈ W n

h the

following relation is satisfied:
∫

En

(

−W,` · F`(V ) +W,i · (K̃ijV,j)
)

dE +Bls(V,W ) +Bbc(V,W )

+

∫

Ω(tn+1)

W (t−n+1) · F0(V (t−n+1))dΩ −
∫

Ω(tn)

W (t+n ) · F0(V (t−n ))dΩ = 0, (4.2.1)

for (` = 0, . . . , 3), (i, j = 1, 2, 3), where the second term is the least-squares stabiliza-

tion operator, defined as

Bls(V,W ) =

(ne)n∑

e=1

∫

Ee
n

(LV V ) · τ̃ (LV W )dE , (4.2.2)

with LV the symmetrized Navier-Stokes operator

LV = Ã`(V )
∂

∂x`
− ∂

∂xi

(

K̃ij(V )
∂

∂xj

)

for ` = 0, . . . , 3, i, j = 1, 2, 3,

and τ̃ the stabilization operator matrix. We use also the notation Linv
V to denote

the inviscid counterpart of LV (hence K̃ij = 0 for all i, j = 1, 2, 3). The boundary

operator in (4.2.1) is obtained after integration by parts of the weak form of (4.1.2)

and is defined as

Bbc(V,W ) =

∫

Qn

n · (W T Φ(V )) −W · (K̃ijV,j)n̄i dQ.

Here n is the unit outward space-time normal vector at the boundary Qn and n̄ its

the spatial component. Similarly, the last two integrals in (4.2.1) are obtained by

combining the boundary integrals at Ω(tn) and Ω(tn+1) with the so-called jump term

Bjump(V,W ) =

∫

Ω(tn)

W (t+n ) ·
(

F0(V (t+n )) − F0(V (t−n ))
)

dΩ,
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which ensures weak continuity between different space-time slabs. We do not give a

detailed analysis of the boundary operator since it is beyond the scope of this chapter.

The stabilization operator is added to the weak formulation of the incompressible

Navier-Stokes equations to ensure that the inf-sup or LBB condition is satisfied, see

e.g [48], which is essential to obtain a unique solution. The stabilization operator

technique allows the use of equal order polynomial basis functions for all quantities

and provides more flexibility in the construction of finite element spaces. In the least-

squares operator, the choice of the τ̃ matrix is crucial, and is examined in detail in

this chapter. This operator greatly influences the stability of the numerical scheme.

4.3 Explicit construction of stabilization operators

In this section a class of dimensionally consistent stabilization operators will be de-

rived, which also includes, as a special case, the stabilization operator given in [23].

We recall that the standard definition of the stabilization matrix requires τ̃ to be sym-

metric, positive definite, have dimensions of time, and scale linearly with the element

size (see [32]). Due to the fully coupled structure of the system (4.1.3), it is, however,

difficult to define a stabilization matrix directly in terms of entropy variables. There-

fore, the choice of variables in which the system is expressed and used to define the

stabilization operator is important.

Our starting point is a dimensional analysis of the stabilization matrix τY related to

the primitive variables Y = (p, u1, u2, u3, T )T . This stabilization operator is related

to τ̃ through the transformation

τ̃ = V,Y τY , (4.3.1)

where V,Y is given in the Appendix B.3. For primitive variables, the stabilization

matrix τY can be chosen to be of diagonal form, which has been successfully applied in

previous research on incompressible flows, see [13]. Introducing this diagonal τY into

(4.3.1) results, however in a non-symmetric stabilization matrix for entropy variables,

which does not satisfy our requirements on the symmetric formulation. It is possible

to obtain a diagonal matrix for entropy variables, such as τ̃ = diag (V,Y τY ), with

the diagonal τY which is therefore symmetric and also positive definite. This simple

choice is however not good, as shown in the numerical examples in [23]. In order to

find a stabilization operator in terms of the primitive variables, we first transform the

Galerkin least-squares discretization defined in the entropy variables (4.2.1) to the

primitive variables. All terms in the variational formulation (4.2.1) remain essentially

unchanged with the least-squares contribution written in terms of the differential

operator LY .

In order to derive a dimensionally consistent stabilization operator we need to make

the concept “a scales like b” mathematically more precise. For this we first introduce
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some notation. Consider the set S of all flow variables (such as velocity, temperature,

pressure, etc.), and its power set, denoted by P (S).

Definition 4.3.1 Given the set S, P (S), a set V = {ν1, ν2, . . . , νn} ∈ P (S) and a set

of functionals F = {f | f : P (S) → R}. Introduce the reference values for the elements

of V , r(V) = {r(ν1), r(ν2), . . . , r(νn)}. Furthermore, define the following mapping

Λ : (ν1, ν2, . . . , νn) 7→ (λ1ν1, λ2ν2, . . . , λnνn) for any λi > 0,

such that there are mi ∈ Z, i = 1, . . . , n with

f(Λ(V)) = λm1
1 λm2

2 · · ·λmn
n f(V), ∀ f ∈ F.

Then, an equivalence relation ∼V over the set of functionals F is defined as:

f ∼V g ⇐⇒ whenever

{

f(Λ(V)) = λm1
1 λm2

2 · · ·λmn
n f(V)

g(Λ(V)) = λk1
1 λ

k2
2 · · ·λkn

n g(V),

then mi = ki, ∀i = 1, . . . n.

We say that f is dimensionally equivalent (or has the same dimension) to g with

respect to the set of flow variables V .

Definition 4.3.2 An equivalence class is a subset of F of the form {g : g ∼V f},
where f is an element in F. This equivalence class is represented as

[f ]V = (r(ν1))
m1(r(ν2))

m2 · · · (r(νn))mn

and addition is defined between two elements of F if and only if they belong to the

same equivalence class.

Definition 4.3.3 The set V is called canonical if for νi ∈ V , @ lj ∈ Z such that we

can express r(νi) = (r(νi1 ))
l1 · · · (r(νik

))lk with νil
∈ V \ {νi}, for any i = 1, . . . , n.

If each element of F forms an equivalence class by itself, then F is called a set of

independent variables with respect to the canonical set V .

Note here that each equivalence class in F is closed to linear combinations, i.e.,

f ∼V g =⇒ c1f + c2g ∼V f, ∀c1, c2 ∈ R \ {0}.

The inverse of an element and multiplication between two elements of F have the

following properties, respectively

[
1

f

]

V
= ([f ]V)

−1
, [f1 · f2]V = [f1]V · [f2]V .
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Definition 4.3.4 Let A = (aij) ∈ Rn×m, B = (bij) ∈ Rn×m. Then, we define A ∼V
B if

aij ∼V bij for all i = 1, . . . , n, j = 1, . . . ,m. (4.3.2)

Our goal is now to derive a dimensionally consistent stabilization operator for the

Navier-Stokes equations in primitive variables. We first transform the equations

LV V = 0 to the primitive variables Y = (p, u1, u2, u3, T )T :

LY Y = A0(Y )Y,0 +Ai(Y )Y,i − (Kij(Y )Y,j),i = 0 (4.3.3)

with the coefficient matrices A`(Y ) and Kij(Y ) given in the Appendix B.2. For the

dimensional analysis we first need some preliminaries to specify the dimension of the

various terms in the Navier-Stokes equations. Let us denote length, time, mass, and

temperature by l, t, m, T , respectively, and introduce the reference values for length

L, time τ, mass M and temperature Θ. Consider the canonical set {l, t,m, T}, then

we obtain the following equivalence classes

[u]{l,t,m,T} =
L

τ
, [ρ]{l,t,m,T} =

M

L3
, [l]{l,t,m,T} = L, [T ]{l,t,m,T} = Θ,

which imply that the set V = {u, T, ρ, l} is a set of independent variables with respect

to the canonical set {l, t,m, T}. Moreover, V is a canonical set and we consider

the set of reference values r(V) = {U,Θ, R, L}, with U and R the reference values

for velocity and density, respectively. Using Definitions 4.3.1 and 4.3.4, we give a

dimensional analysis of the derivatives of the primitive variables and the corresponding

flux Jacobian matrices in (4.3.3) with respect to V . For the velocity components we

have [ui]V = U, for all i = 1, 2, 3. Then,

[u,0]V =
U2

L
, [u,i]V =

U

L
, [T,0]V =

UΘ

L
, [T,i]V =

Θ

L
, for all i = 1, 2, 3.

Since for an incompressible flow the pressure is not a thermodynamic but a mechanical

variable, we obtain [p]V = RU2. Then, [p,i]V = RU2/L for all i = 1, 2, 3, and [p,0]V =

RU3/L. Moreover, for the entries of the Jacobian matrices we have [cp]V = U2/Θ,

[h−k]V = U2 with h the specific enthalpy and k = 1
2 |u|2, [µ]V = RUL for the viscosity

coefficient µ, and [κ]V = RU3L/Θ for the thermal conductivity κ. Hence, using the

definition of the various vectors and matrices given in the Appendix, the following

dimensional equivalence is valid

[Y,0]V =
U

L










RU2

U

U

U

Θ










, [Y,i]V =
U

L










RU

1

1

1

Θ/U










,
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[A0(Y )]V =












0 0 0 0 0

0 R 0 0 0

0 0 R 0 0

0 0 0 R 0

0 RU RU RU RU2/Θ












, (4.3.4)

[Ai(Y )]V =












0 δ1iR δ2iR δ3iR 0

δ1i RU δ2iRU δ3iRU 0

δ2i δ1iRU RU δ3iRU 0

δ3i δ1iRU δ2iRU RU 0

U RU2 RU2 RU2 RU3/Θ












, (4.3.5)

where δij is the Kronecker delta symbol, and for the viscosity coefficient matrices we

obtain for i = j:

[Kii(Y )]V = L










0 0 0 0 0

0 RU 0 0 0

0 0 RU 0 0

0 0 0 RU 0

0 RU2 RU2 RU2 RU3/Θ










, (4.3.6)

and for i 6= j we have

[Kij(Y )]V = L










0 0 0 0 0

0 0 a12RU a13RU 0

0 a21RU 0 a23RU 0

0 a31RU a32RU 0 0

0 b11RU
2 b22RU

2 b33RU
2 0










, (4.3.7)

with i, j = 1, 2, 3. The coefficients in the matrix Kij(Y ) are defined as

akl =

{

1 if (k = i ∧ l = j) ∨ (k = j ∧ l = i)

0 otherwise
bkk =

{

1 if k = i ∨ k = j

0 otherwise,

for k, l = 1, 2, 3. By dimensional consistency, we can add the various contributions

and obtain the following dimensional equivalence for the Navier-Stokes equations

[LY Y ]V = [A0(Y )Y,0 +Ai(Y )Y,i − (Kij(Y )Y,j),i]V =
RU

L
(1, U, U, U, U2)T . (4.3.8)

Our aim is now to construct a stabilized finite element method, which satisfies the

following requirements:

(a) The method admits discrete solutions Y h with the same dimension as the solu-

tion Y of (4.3.3).
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(b) Elementwise the least-squares stabilization operator is dimensionally equivalent

with the Galerkin operator.

Similar assumptions are made in [58], where a scaling analysis is performed to deter-

mine the appropriate low Mach number behavior of the stabilization matrix. These

requirements imply

[
(LT

Y W ) · τY (LY Y )
]

V = [W · (LY Y )]V , ∀W ∈Wn
h ,

which is equivalent with

1

L

((

U [AT
0 (Y )]V + [AT

i (Y )]V − 1

L
[KT

ij(Y )]V

)

[W ]V

)T

[τY (LY Y )]V = [W T ]V [(LY Y )]V ,

(4.3.9)

where the scales U and 1/L originate from the derivatives of the test function. Note

that using [µ]V = RUL and [κ]V = RU3L/Θ, it follows that Ai(Y ) ∼V (1/L)Kij(Y )

for all i, j = 1, 2, 3, hence the addition and subtraction are well defined in (4.3.9). Since

the test functions are arbitrary, using (4.3.4)-(4.3.7), equation (4.3.9) is equivalent to

1

L

(

U [A0(Y )]V + [Ai(Y )]V − 1

L
[Kij(Y )]V

)

[τY ]V [(LY Y )]V = [(LY Y )]V . (4.3.10)

Therefore, requirements (a) and (b) provide an additional condition on the compo-

nents of the stabilization matrix τY , i.e., (4.3.10) is equivalent to:

1

L










0 R R R 0

1 RU RU RU 0

1 RU RU RU 0

1 RU RU RU 0

U RU2 RU2 RU2 RU3/Θ










[τY ]V [(LY Y )]V = [(LY Y )]V . (4.3.11)

The scaling relation (4.3.11) shows that a suitable stabilization matrix τY is dimen-

sionally equivalent to the inverse of a non-singular matrix represented by the expanded

matrix in (4.3.11), i.e.,

[τY ]V = L












U 1 1 1 0

1/R 1/(RU) 1/(RU) 1/(RU) 0

1/R 1/(RU) 1/(RU) 1/(RU) 0

1/R 1/(RU) 1/(RU) 1/(RU) 0

Θ/(RU) Θ/(RU2) Θ/(RU2) Θ/(RU2) Θ/(RU3)












,

which defines the structure of a dimensionally consistent stabilization matrix τY . Sum-

marizing, we write the general form of the stabilization matrix in primitive variables,
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indicating the dimension of the entries of the matrix, as

τY = L



















c11U c12 c13 c14 0

c21
R

c22
RU

c23
RU

c24
RU

0

c31
R

c32
RU

c33
RU

c34
RU

0

c41
R

c42
RU

c43
RU

c44
RU

0

c51Θ

RU

c52Θ

RU2

c53Θ

RU2

c54Θ

RU2

c55Θ

RU3



















(4.3.12)

where cij are functions of dimensionless flow variables and R,U,Θ, L are the reference

density, velocity, temperature and length, respectively. Note here that the zeroes in

the last column of (4.3.12) result from the inverse of a non-singular matrix represented

by the expanded matrix in (4.3.11). In this form the matrix still has 21 unknowns

which need to be specified.

In the remaining part of this section we will specify the coefficients cij in the stabi-

lization matrix τY (4.3.12) using the symmetry property of τ̃ .

Theorem 4.3.1 Given the stabilization matrix τY for primitive variables in the di-

mensionally consistent form (4.3.12), then a unique class of stabilization matrices τY

and τ̃ , related by transformation (4.3.1), can be defined as:

τY =










τc (ω + 1)ρu1τm (ω + 1)ρu2τm (ω + 1)ρu3τm 0

ωu1τm τm 0 0 0

ωu2τm 0 τm 0 0

ωu3τm 0 0 τm 0

−(h− k)τe −u1τe −u2τe −u3τe τe










(4.3.13)

and

τ̃ =
















τ̃11
ωu1

T τm + (h−k)
T

u1

T τe
ωu2

T τm + (h−k)
T

u2

T τe
ωu3

T τm + (h−k)
T

u3

T τe − (h−k)
T 2 τe

. . . 1
T τm +

u2
1

T 2 τe
u1u2

T 2 τe
u1u3

T 2 τe − u1

T 2 τe

. . . . . . 1
T τm +

u2
2

T 2 τe
u2u3

T 2 τe − u2

T 2 τe

. . . symm . . . 1
T τm +

u2
3

T 2 τe − u3

T 2 τe

. . . . . . . . . . . . 1
T 2 τe
















(4.3.14)

where h is the specific enthalpy, k = |u|2/2, ω ∈ R is a parameter, τc, τm, τe ∈ R+

and τ̃11 = 1
ρT τc −

ω|u|2
T τm +

(
h−k

T

)2
τe.

59



Chapter 4. Stabilization operators for the incompressible Navier-Stokes

equations

Proof:

Using the symmetry of τ̃ and transformation (4.3.1), we obtain the following relations

for the coefficients cij in (4.3.12):

c23 = c32, c24 = c42, c34 = c43, (4.3.15)

c12 =
ρ(c22u1 + c23u2 + c24u3 + c21U)

RU
, c13 =

ρ(c23u1 + c33u2 + c34u3 + c31U)

RU

c14 =
ρ(c24u1 + c34u2 + c44u3 + c41U)

RU
, c51 = − (h− k)c55

U2
,

c52 = −u1c55
U

, c53 = −u2c55
U

, c54 = −u3c55
U

. (4.3.16)

Since [k]V = [h]V = U2, all operations in the above relations are valid and only

for convenience we leave the elements of V,Y in their dimension full form. Consider

now the middle 3 × 3 block in (4.3.12), which corresponds to the three momentum

equations. Relation (4.3.15) implies that this block is symmetric. Moreover, this

block must be rotational invariant, which together with it’s symmetry, implies that

it is a constant times the identity matrix. The coefficients must therefore satisfy the

relation c22 = c33 = c44 = c and c23 = c32 = c24 = c42 = c34 = c43 = 0. For simplicity

we introduce the following notation for the diagonal entries in τY ,

τc := c11UL, τm :=
cL

RU
, τe :=

c55LΘ

RU3
. (4.3.17)

Then, the relations in (4.3.16) can be written as

c51 = −RU(h− k)

LΘ
τe, c52 = −Ru1U

2

LΘ
τe,

c53 = −Ru2U
2

LΘ
τe, c54 = −Ru3U

2

LΘ
τe

and obtain

c12 =
ρu1

L
τm +

ρ

R
c21, c13 =

ρu2

L
τm +

ρ

R
c31, c14 =

ρu3

L
τm +

ρ

R
c41. (4.3.18)

Since τm 6= 0, it follows from (4.3.18) that there are at least three additional non-

vanishing entries in the matrix τY . The vector a, composed of a = (c12, c13, c14)
T ,

is multiplied in the least-squares operator with the momentum equations, which are

rotational invariant, and this implies that a must also be rotational invariant. We

can therefore write a = αu, with the scalar [α]V = 1/U , and using (4.3.18) obtain

ρ

R
b =

(

α− ρ

L
τm

)

u,

with b = (c21, c31, c41)
T . Since [α]V = [ ρ

Lτm]V , we can choose α = (ω + 1)
ρτm

L
with

ω ∈ R. Therefore,

a = (ω + 1)
ρτm
L

u,
b

R
= ω

τm
L
u.
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Inserting all relations on the constants cij , i, j = 1, . . . , 5 into (4.3.12), we obtain the

general form of the stabilization matrix (4.3.13).

The stabilization operator τ̃ can be obtained directly using (4.3.1) with τY given by

(4.3.13). �

In order to ensure the positive definiteness of τ̃ , we need to set conditions on the

parameters ω, τc, τm and τe.

Theorem 4.3.2 The matrix τ̃ in (4.3.14) is positive definite if and only if the fol-

lowing conditions on the stabilization parameters τc, τm, τe and ω are satisfied







τm > 0

τe > 0

τc > ρ|u|2ω(ω + 1)τm

(4.3.19)

Proof:

Assume that τ̃ is positive definite. Then, all eigenvalues of τ̃ are real and positive.

Since τm is an eigenvalue of τ̃ , it follows that τm > 0. From the positive definiteness

of τ̃ it follows that all it’s principal submatrices are also positive definite, therefore

τe > 0. Moreover, it follows that all minor principals of τ̃ are positive definite. Since

τe > 0 and τm > 0, this implies the following five inequalities:

τc > ρ

(

ω|u|2τm − (h− k)2

T
τe

)

, (4.3.20)

τc >
ρτm

(
ωu2

1(ωTτm + 2hτe) + ωTτm|u|2 − (h− k)2τe
)

Tτm + u2
1τe

, (4.3.21)

τc >
ρτm

(
ω(u2

1 + u2
2)(ωTτm + 2hτe) + ωTτm|u|2 − (h− k)2τe

)

Tτm + (u2
1 + u2

2)τe
, (4.3.22)

τc >
ρτm

(
ω|u|2(ωTτm + 2hτe) + ωTτm|u|2 − (h− k)2τe

)

Tτm + |u|2τe
, (4.3.23)

τc > ρω|u|2(ω + 1)τm. (4.3.24)

Consider now the right-hand side of (4.3.20-4.3.24) written in the following functional

form

F (X, τe) =
ρτm

(
ωX(ωTτm + 2hτe) + ωTτm|u|2 − (h− k)2τe

)

Tτm +Xτe

with 0 ≤ X ≤ |u|2 and τe ≥ 0. We can consider now the following cases:
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Case 1. Assume that τe = 0. Then

F (X, 0) = ρωτm(ωX + |u|2)

Since ∂F (X,0)
∂X = ρω2τm > 0, it follows that F (X, 0) is a monotone increasing func-

tion of X. Hence, F (X, 0) ≤ F (|u|2, 0) = ρω|u|2(ω + 1)τm for all 0 ≤ X ≤ |u|2.
Consequently, when τe = 0 combining inequalities (4.3.20-4.3.24) leads to (4.3.24).

Case 2. Assume that τe > 0. Then, for any fixed 0 ≤ X∗ ≤ |u|2 it follows that

F (X∗, τe) is a monotone decreasing function of τe, since

∂F (X∗, τe)

∂τe
= −ρτ

2
mT (h− k − ωX)2

(Tτm +Xτe)2
< 0.

Therefore, F (X∗, 0) > F (X∗, τe) for all τe > 0 and for all 0 ≤ X∗ ≤ |u|2.
Summarizing, from the two cases discussed above, it follows that

F (X∗, τe) < F (X∗, 0) ≤ F (|u|2, 0), ∀ X∗ ∈ [0, |u|2], and ∀τe > 0,

which leads to (4.3.19).

The proof of the reverse statement of this lemma is straightforward, since (4.3.19)

implies that the inequalities (4.3.20-4.3.24) are valid, i.e., all minor principals of τ̃ are

positive definite, which is a sufficient condition for positive definiteness of τ̃ . �

Remark 4.3.1 We can give further information on the lower right 4 × 4 principal

submatrix of τ̃ , denoted by τ̂ . Note that τ̂ does not depend on τc and ω. The positive

definiteness of τ̃ implies that τ̂ is also positive definite and it’s eigenvalues are

λ1 = λ2 =
τm
T

> 0, (4.3.25)

and

λ3,4 =
τm
2T

+
τe(|u|2 + 1)

2T 2
±
√
(
τm
2T

+
τe(|u|2 + 1)

2T 2

)2

− τm
T

τe
T 2

> 0. (4.3.26)

Remark 4.3.2 Setting ω = 0 in Theorem 4.3.1, we obtain the stabilization matrix

proposed in [23], which is based on numerical experiments.

Remark 4.3.3 Using the dimensional analysis described in this section, we can state

the symmetrized Navier-Stokes equations in dimensionless quantities:

Ã`V,` −
1

Re
(K̃ijV,j),i = 0, for ` = 0, . . . , 3, i, j = 1, 2, 3, (4.3.27)

where Re denotes the Reynolds number.
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This follows directly from the following relations. Define the reference values for the

viscosity µr, specific heat at constant pressure cpr and heat conductivity κr using

the independent set of reference values {U,Θ, R, L} and the dimensionless Pi groups

Re,Pr,Ec, as:

µr =
RUL

Re
, cpr =

U2

ΘEc
, κr =

µrcpr

Pr
=

RU3L

ΘRePrEc
,

where Pr denotes the Prandtl number and Ec the Eckert number. Introducing the

reference values into the symmetrized system and using (4.3.8), it follows that the

dimensional and dimensionless forms of the Navier-Stokes equations are related in

the following way

Ã0V,t + ÃiV,i − (K̃ijV,j),i =
RU

L
Dr

(

Ã?
0V

?
,t? + Ã?

i

∂V ?

∂x?
i

− 1

Re

∂

∂x?
i

(

K̃?
ij

∂V ?

∂x?
j

))

,

where the dimensionless variables are marked with a star andDr = diag (1, U, U, U, U2).

Note that the dimensionless Jacobian matrices have the same functional form as their

dimensionfull counterparts, only the entries r and di, i = 1, 2, 3 in the Jacobian ma-

trices Ã` and K̃ii, respectively, appear in their dimensionless forms in Ã?
` and K̃?

ii

with different coefficients

r? = 2k? +
c?p
Ec
T, d?

i =
1

3
µ?u?2

i + µ?|u?|2 +
κ?

Pr Ec
T ?,

where we used the same notations for the matrix entries as in the Appendix. There-

fore, the stars can be dropped from the non-dimensional equations. Observe that

the factor 1/Re can be extracted from the viscous coefficient matrices and (4.3.27) is

obtained.

Remark 4.3.4 It is straightforward to prove that the dimensionless symmetrized in-

compressible Navier-Stokes equations (4.3.27) are equivalent with the continuity equa-

tion

ui,i = 0, i = 1, 2, 3,

the momentum equations

ui,t + ujui,j = −1

ρ
p,i +

1

Re
(νsij),j , i, j = 1, 2, 3,

with ν(T ) = µ(T )/ρ the kinematic viscosity, and sij = ui,j + uj,i the shear stress

tensor, and the equation for the temperature field

ρcp
Ec

(T,t + uiT,i) =
µ

Re

3∑

i,j=1

1

2
s2ij +

1

RePrEc
(κT,i),i i = 1, 2, 3.

In the remainder of this chapter we will use now the same symbols for the dimension-

less quantities.
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4.4 Analysis of a class of stabilization operators

The class of stabilization matrices for the entropy variables derived in Section 4.3 is

dimensionally consistent and positive definite. These are essential requirements for

the stabilization operator, but not sufficient to ensure that the numerical scheme is

stable and has a unique solution. In this section we investigate necessary conditions

for this by analyzing the coercivity of the linearized Galerkin least-squares finite

element discretization for the incompressible Navier-Stokes equations. This will result

in sufficient conditions to ensure coercivity for a class of stabilization operators which

belong to the framework given by Theorems 4.3.1 and 4.3.2.

If we specify the reference variables U,L,R and Θ in (4.3.17), and introduce the

function ξ, then we can specify the coefficients τc, τm and τe in (4.3.17) in terms of

the flow variables and element size.

Definition 4.4.1 The stabilization parameters τc, τm and τe on the elements Ee
n ∈

T n
h are defined as

τc(x) =
he|u(x)|

2
, τm(x) =

he

2ρ|u(x)|ξ(Ree(x)), τe(x) =
τm(x)

cv

for all x ∈ Ee
n, with

Ree(x) =
mkρ|u(x)|he

µ(x)
, mk = min{1, Ck}, (4.4.1)

ξ(Ree(x)) =

{

Ree(x), 0 ≤ Ree(x) < 1

1, Ree(x) ≥ 1,
(4.4.2)

where µ is the fluid viscosity, he denotes the element diameter and Ck is a positive

constant independent of the physical properties and element diameter he.

The motivation for the function ξ in the definition of τm and τe is the need in the

coercivity proof for an upper bound on these parameters which depends on h2
e. Let us

first show that the stability parameter τm is bounded in each element by a constant.

By definition, for all x ∈ Ee
n,

τm(x) =
he

2ρ|u(x)| , Ree(x) ≥ 1, (4.4.3)

τm(x) =
mkh

2
e

2µ(x)
, 0 ≤ Ree(x) < 1. (4.4.4)

Therefore, for Ree(x) ≥ 1,

τm(x) =
he

2ρ|u(x)|
1

Ree(x)

mkρ|u(x)|he

µ(x)
≤ mkh

2
e

2µ(x)
, ∀x ∈ Ee

n , (4.4.5)
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and combined with (4.4.4), we conclude that the bound (4.4.5) is valid for all values

of Ree(x). A similar estimate is valid for τe,

τe(x) ≤
mkh

2
e

2cvµ(x)
, ∀x ∈ Ee

n . (4.4.6)

The next lemma provides sufficient conditions such that the stabilization matrix τ̃ sat-

isfies the requirements of Theorem 4.3.2, which ensures that the stabilization matrix

is positive definite.

Lemma 4.4.1 Using Definition 4.4.1, the stabilization matrix τ̃ in (4.3.14) is posi-

tive definite for all ω ∈
(

−1−
√

5
2 , −1+

√
5

2

)

.

Proof:

Using Theorem 4.3.2 and Definition 4.4.1, we obtain that (4.3.19) is equivalent with

ω2 + ω − 1

ξ(Ree(x))
< 0 for all x ∈ Ee

n, (4.4.7)

and combined with (4.4.2) this completes the proof. �

For the analysis of the coercivity of the Galerkin discretization it is convenient to

separate the continuity equation, which is the first equation in the system (4.1.3),

from the other equations. For this purpose we introduce the variable V̂ , which is the

image of V under the projection π : E5 → E4, such that π(V ) = V̂ = (V2, V3, V4, V5)
T ,

with a similar definition for Ŵ . Further, we denote with Â` and K̂ij the lower right

4×4 part of Ã`, K̃ij ∈ R5×5, respectively. In the remainder of this section we assume

that these Jacobian matrices are constant.

Introduce the following linear operators:

L̂ : E4 → R4, L̂V̂ = Â`(V̄ )
∂V̂

∂x`
− 1

Re

∂

∂xi

(

K̂ij(V̄ )
∂V̂

∂xj

)

, (4.4.8)

where L̂inv denotes the inviscid part of L̂, (i.e., K̂ij = 0),

D̂ : E4 → R, D̂V̂ = ρ̄T̄

(

∂V̂i

∂xi
+ ūi

∂V̂4

∂xi

)

, (4.4.9)

F̂ : E → R4, F̂V1 = −ρ̄T̄
(
∂V1

∂x1
,
∂V1

∂x2
,
∂V1

∂x3
, ūi

∂V1

∂xi

)T

, (4.4.10)

for ` = 0, . . . , 3, i, j = 1, 2, 3 and V̄ , ρ̄, T̄ , ū denote prescribed (vector) fields.

We consider now the linearized incompressible Navier-Stokes equations, defined in

entropy variables on a bounded domain Ω, together with a source term Ŝ : E → R4:

D̂V̂ = 0, in Ω, (4.4.11)

L̂V̂ − F̂V1 = Ŝ , in Ω, (4.4.12)

65



Chapter 4. Stabilization operators for the incompressible Navier-Stokes

equations

and boundary conditions

V̂ = gw, at ∂Ω, (4.4.13)

with
∑3

i=1

∫

∂Ω
gwin̄idS = 0 and gwi, (i = 1, · · · , 4) given entropy functions at the

boundary ∂Ω. We also introduce the variable Ṽ = V̂ − gw into (4.4.11)-(4.4.13),

hence Ṽ has homogeneous boundary conditions at ∂Ω, and assume that there exists

a bounded linear trace lifting operator ` for each component of gw. This will make

the treatment of the inhomogeneous boundary conditions much easier.

The splitting of V into V1 and V̂ is also applied to the stabilization matrix τ̃ , given

by (4.3.14):

τ̃ =

(
δ σT

σ τ̂

)

, (4.4.14)

where δ = τ̃11, τ̂ is the lower right 4 × 4 submatrix of τ̃ and

σT =
(

ωu1

T τm + (h−k)u1

T 2 τe,
ωu2

T τm + (h−k)u2

T 2 τe,
ωu3

T τm + (h−k)u3

T 2 τe, − (h−k)
T 2 τe

)

.

With the coefficients given in Definition 4.4.1 and ω satisfying Lemma 4.4.1, we have

δ > 0 and τ̂ is a symmetric positive definite matrix. Hence, using (4.3.25-4.3.26), it

follows that we can write the smallest and largest eigenvalues of τ̂ as:

λmin = cminτm > 0, and λmax = cmaxτm > 0,

where cmin and cmax are positive and functions of |u|, T and cv.

The weak formulation for (4.4.11)-(4.4.13) is obtained by multiplication of (4.4.11)

with the test function W1 and (4.4.12) with Ŵ , integration by parts over the space

time slab En and applying the homogeneous boundary conditions for Ṽ :

Within each space-time slab En, find (V1, Ṽ ) ∈ V n
0h, such that for all (W1, Ŵ ) ∈Wn

0h,

the following relation is satisfied:

Bn(V1, Ṽ ,W1, Ŵ ) : =
1

2
(Â`Ṽ,` − F̂V1, Ŵ )En

− 1

2
(Ṽ , Â`Ŵ,` − F̂W1)En

+
1

2
(D̂Ṽ ,W1)En

− 1

2
(V1, D̂Ŵ )En

+
1

Re
(K̂ij Ṽ,j , Ŵ,i)En

+
1

2
(Ṽ (t−n+1, ·), Ŵ (t−n+1, ·))Â0,Ω(tn+1)

− 1

2
(Ṽ (t+n , ·), Ŵ (t+n , ·))Â0,Ω(tn) +Bn

jump(Ṽ , Ŵ )

+
∑

Ee
n∈T n

h

{
(L̂Ṽ − F̂V1 − Ŝ , τ̂(L̂Ŵ − F̂W1 − Ŝ))Ee

n
+

(D̂Ṽ , δD̂Ŵ )Ee
n

+ (L̂Ṽ − F̂V1 − Ŝ, D̂Ŵσ)Ee
n
+
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(D̂Ṽ σ, L̂Ŵ − F̂W1 − Ŝ)Ee
n

}

= Bn(0, `(gw),W1, Ŵ ) + (Ŝ, Ŵ )En
, (4.4.15)

where `(gw) denotes the trace lifting of gw from the boundary ∂Ω to Ω, and the jump

term is defined as:

Bn
jump(Ṽ , Ŵ ) =

∫

Ω(tn)

Ŵ T (t+n )Â0

(

Ṽ (t+n ) − Ṽ (t−n )
)

dΩ. (4.4.16)

Finally, summing over all space time slabs we obtain the weak formulation for the

whole space-time domain:

Find (V1, Ṽ ) ∈ V0h, such that for all (W1, Ŵ ) ∈ W0h, the following relation is satisfied:

BN (V1,Ṽ ,W1, Ŵ ) :=
1

2

N∑

n=0

{
(Â`Ṽ,` − F̂V1, Ŵ )En

− (Ṽ , Â`Ŵ,` − F̂W1)En

}

+
1

2

N∑

n=0

{
(D̂Ṽ ,W1)En

− (V1, D̂Ŵ )En

}
+

1

Re

N∑

n=0

(K̂ij Ṽ,j , Ŵ,i)En

+
1

2

N∑

n=0

{
(Ṽ (t−n+1, ·), Ŵ (t−n+1, ·))Â0,Ω(tn+1)

+ (Ṽ (t+n , ·), Ŵ (t+n , ·))Â0,Ω(tn)

}

−
N∑

n=1

(Ṽ (t−n ), Ŵ (t+n ))Â0,Ω(tn)

+

N∑

n=0

∑

Ee
n∈T n

h

{
(L̂Ṽ − F̂V1 − Ŝ , τ̂(L̂Ŵ − F̂W1 − Ŝ))Ee

n
+

(D̂Ṽ , δD̂Ŵ )Ee
n

+ (L̂Ṽ − F̂V1 − Ŝ, D̂Ŵσ)Ee
n
+

(D̂Ṽ σ, L̂Ŵ − F̂W1 − Ŝ)Ee
n

}

= BN (0, `(gw),W1, Ŵ ) +
N∑

n=0

(Ŝ, Ŵ )En
+ (Ṽ (t−0 ), Ŵ (t+0 ))Â0,Ω(t0)

. (4.4.17)

In the next part of this we section we will prove that the bilinear form BN with

the class of stabilization operators given by Theorem 4.3.1, with coefficients given in

Definition 4.4.1, is coercive in V0h, hence (4.4.17) has a unique solution. Before we

can prove this result, we first need some technical lemmas.

Lemma 4.4.2 There exists a positive constant Ck, independent of the viscosity coef-

ficient µ and element diameter he, such that

Ck

∑

Ee
n∈T n

h

h2
e‖(K̃ijV,j),i‖2

0,Ee
n
≤

∑

Ee
n∈T n

h

‖K̃ijV,j‖2
0,Ee

n
for all V ∈ V n

h . (4.4.18)
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Proof:

The proof of this lemma is a direct application of inverse estimates given in for

instance [4]. Using Theorem 4.5.11 in [4] for p = q = 2, l = 1, m = 0, there exists

C = C(l, p, q, ρ) such that

(nel(n)
∑

e=1

|v|2H1(Ee
n)

)1/2

≤
(nel(n)
∑

e=1

‖v‖2
H1(Ee

n)

)1/2

≤ Ch−1

(nel(n)
∑

e=1

‖v‖2
L2(Ee

n)

)1/2

(4.4.19)

Let v = K̃ijV,j , then (4.4.19) implies that

nel(n)
∑

e=1

‖(K̃ijV,j),i‖2
L2(Ee

n) ≤ C2h−2

nel(n)
∑

e=1

‖K̃ijV,j‖2
L2(Ee

n) (4.4.20)

which is equivalent to (4.4.18) with Ck = C−2. �

Lemma 4.4.3 There exists a constant α∗ = α∗(|u|, T, µ, κ) > 0, such that

∫

En

Ṽ T
,i K̂ij Ṽ,j dE − α‖K̂ij Ṽ,j‖2

0 ≥ 0 (4.4.21)

for all α ∈ Iα∗ , where Iα∗ =







[0, α∗] if α > 0

[−α∗, 0] if α < 0.

Proof:

The expression in (4.4.21) is equivalent to

∫

En

3∑

i=1



Ṽ T
,i

( 3∑

j=1

K̂ij Ṽ,j

)

− α
( 3∑

m=1

Ṽ T
,mK̂

T
im

)( 3∑

l=1

K̂ilṼ,l

)



 dE . (4.4.22)

Rearranging terms, we can rewrite (4.4.22) into matrix form as

∫

En

(

Ṽ T
,1 , Ṽ

T
,2 , Ṽ

T
,3

)

N(α)
(

Ṽ T
,1 , Ṽ

T
,2 , Ṽ

T
,3

)T

dE (4.4.23)

where the 12× 12 matrix N(α) has the form

N(α) =










K̂11 − α
(

K̂T
i1K̂i1

)

K̂12 − α
(

K̂T
i1K̂i2

)

K̂13 − α
(

K̂T
i1K̂i3

)

K̂21 − α
(

K̂T
i2K̂i1

)

K̂22 − α
(

K̂T
i2K̂i2

)

K̂23 − α
(

K̂T
i2K̂i3

)

K̂31 − α
(

K̂T
i3K̂i1

)

K̂32 − α
(

K̂T
i3K̂i2

)

K̂33 − α
(

K̂T
i3K̂i3

)










.

For the proof of this lemma it is sufficient to show that there exist α ∈ Iα∗ such

that the matrix N(α) is positive-semidefinite for any given flow data. Let us write
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N(α) in the form N(α) = −αA + B. Observe that A = BBT . Using the property

K̃ij = K̃T
ji of the viscous flux Jacobian matrices for the entropy variables, it follows

that N(α), A and B are symmetric matrices. Since B is symmetric, there exists a

unique decomposition

B = RΛRT , with RRT = I, (4.4.24)

where Λ is the diagonal matrix with eigenvalues of B, R the corresponding right

eigenvector matrix and I the identity matrix. Since A is symmetric, a similar decom-

position is valid also for A. On the other hand,

A = BBT = RΛRT (RT )T ΛTRT = RΛ2RT . (4.4.25)

Using the uniqueness of such a decomposition for A, it follows that the matrices A and

B have the same set of eigenvectors and, denoting by λA and λB the eigenvalues of the

matrices A and B, respectively, the relation between the corresponding eigenvalues is

λA = λ2
B . The eigenvalues are functions of the flow variables V = {|u|2, T, µ, κ}, but

do not depend on the direction of the flow. Then, for any eigenvector of A and B,

the following holds:

N(α)v = (−αA+B)v = (−αλA + λB)v,

which means that v is also an eigenvector of N(α) and, if we denote the eigenvalues

of N(α) by λN (α), they have the form

λN (α) = −αλA + λB = −αλ2
B + λB .

One property of the symmetrizing variables is that the matrixB is positive-semidefinite,

therefore λB ≥ 0. The relation between the eigenvalues of A and B implies that A is

also positive-semidefinite.

Consider the case α ≥ 0.

(a) Assume that λB > 0. Since

λN (α = 0) = λB > 0 and
∂λN (α)

∂α
= −λ2

B < 0,

there exists an α? > 0 and an interval I = [0, α?] such that λN (α) ≥ 0 for all α ∈ I and

λB 6= 0. Moreover, we have α∗ = 1/λmax, where λmax = max{λ | λ ∈ sp (B) \ {0}},
with sp (B) denoting the spectrum of matrix B.

Consequently, we have found an α∗, which value only depends on the magnitude of

velocity, temperature and viscosity coefficient, but not on the direction of the flow.

(b) Assume that λB = 0.
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Then, the condition is trivially satisfied for all α.

The case α ≤ 0 is analogous. �

Before we state the main result of this section, we first make the following assumptions

on the stabilization matrix.

Assumption 4.4.1 The stabilization matrix τ̃ and the fluid viscosity µ are element-

wise constant.

These assumptions are not essential for the coercivity proof, but remove unnecessary

technical complications in the analysis. The next theorem shows that the Galerkin

least squares discretization (4.4.17) results in a well posed problem with a unique

solution.

Theorem 4.4.1 Given the conditions stated in Assumption 4.4.1, and the stabiliza-

tion matrix defined in Theorem 4.3.1, with coefficients given in Definition 4.4.1,

then there exists a positive constant C, independent of (V1, Ṽ ), such that for all

(V1, Ṽ ) ∈ V0h the following condition is satisfied

BN (Ṽ , V1; Ṽ , V1) ≥ C |||V |||2 , (4.4.26)

where the norm |||V |||2 is defined as

|||V |||2 =
1

2
‖Ṽ (t−N+1, ·)‖2

Â0,Ω(tN+1,·) +
1

2
‖Ṽ (t+0 , ·)‖2

Â0,Ω(t0)

+
1

2

N∑

n=1

‖Ṽ (t+n , ·) − Ṽ (t−n , ·)‖2
Â0,Ω(tn)

+
N∑

n=0

∑

Ee
n∈Th

{
‖V ‖2

0,Ee
n

+ ‖K̂ij Ṽ,j‖2
0,Ee

n
+ ‖D̂Ṽ ‖2

0,Ee
n
+

‖τ̂1/2(L̂inv Ṽ − F̂V1 − Ŝ)‖2
0,Ee

n

}
. (4.4.27)

Remark 5. Note, since the polynomials are only linear in time the jumps across the

space-time slabs at the different time levels in |||·||| provide sufficient conditions to

specify also the time derivative completely for all V ∈ V0h.

Proof:

Take W = V , the expression for BN (V1, Ṽ ;V1, Ṽ ) given by (4.4.17) then is after some

algebraic manipulations equivalent with

BN (V1, Ṽ ;V1, Ṽ ) =
1

2
‖Ṽ (t−N+1, ·)‖2

Â0,Ω(tN+1)
+

1

2
‖Ṽ (t+0 , ·)‖2

Â0,Ω(t0)
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+
1

2

N∑

n=1

‖Ṽ (t+n , ·) − Ṽ (t−n , ·)‖2
Â0,Ω(tn)

+
1

Re

N∑

n=0

(K̂ij Ṽ,j , Ṽ,i)En

+

N∑

n=0

∑

Ee
n∈T n

h

{
‖δ1/2D̂Ṽ ‖2

0,Ee
n

+ ‖τ̂1/2(L̂Ṽ − F̂V1 − Ŝ)‖2
0,Ee

n
+

2(D̂Ṽ σ, L̂Ṽ − F̂V1 − Ŝ)Ee
n

}
,

where τ̂1/2 denotes the matrix square root of τ̂ . Introduce the following estimate

2
(

D̂Ṽ σ, L̂Ṽ − F̂V1 − Ŝ
)

Ee
n

= 2
(

D̂Ṽ τ̂−1/2σ, τ̂1/2(L̂Ṽ − F̂V1 − Ŝ)
)

Ee
n

≤ ε1‖D̂Ṽ τ̂−1/2σ‖2
0,Ee

n
+

1

ε1
‖τ̂1/2(L̂Ṽ − F̂V1 − Ŝ)‖2

0,Ee
n
,

which is valid for all ε1 > 0, then we obtain

BN (V1, Ṽ ;V1, Ṽ ) ≥ 1

2
‖Ṽ (t−N+1, ·)‖2

Â0,Ω(tN+1)
+

1

2
‖Ṽ (t+0 , ·)‖2

Â0,Ω(t0)

+
1

2

N∑

n=1

‖Ṽ (t+n , ·) − Ṽ (t−n , ·)‖2
Â0,Ω(tn)

+
1

Re

N∑

n=0

(K̂ij Ṽ,j , Ṽ,i)En

+

N∑

n=0

∑

Ee
n∈T n

h

{
‖δ1/2D̂Ṽ ‖2

0,Ee
n
− ε1‖D̂Ṽ τ̂−1/2σ‖2

0,Ee
n
+

(1 − 1

ε1
)‖τ̂1/2(L̂Ṽ − F̂V1 − Ŝ)‖2

0,Ee
n

}
. (4.4.28)

The last norm in (4.4.28) can be further estimated by splitting the operator L̂ into

the inviscid and viscous part:

‖τ̂1/2(L̂Ṽ − F̂V1 − Ŝ)‖2
0,Ee

n
= ‖τ̂1/2(L̂invṼ − F̂V1 − Ŝ)‖2

0,Ee
n

+
1

Re2 ‖τ̂1/2(K̂ij Ṽ,j),i‖2
0,Ee

n

− 2(L̂invṼ − F̂V1 − Ŝ , 1

Re
τ̂(K̂ij Ṽ,j),i)Ee

n

≥ (1 − 1

ε2
)‖τ̂1/2(L̂inv Ṽ − F̂V1 − Ŝ)‖2

0,Ee
n

+ (1 − ε2)
1

Re2 ‖τ̂1/2(K̂ij Ṽ,j),i‖2
0,Ee

n
, (4.4.29)

for all ε2 > 0. Furthermore, since we assume that τ̃ is constant on each element, the

second to last norm in (4.4.28) can be written as

‖D̂Ṽ τ̂−1/2σ‖2
0,Ee

n
= (σT τ̂−1σ)‖D̂Ṽ ‖2

0,Ee
n
. (4.4.30)
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Note here that since τ̂ is positive definite, so is τ̂−1, which means that σT τ̂−1σ > 0

for all σ ∈ R4 \ {0}. Using (4.4.29), (4.4.30) and δ > 0, we obtain

BN (V1, Ṽ ;V1, Ṽ ) ≥ 1

2
‖Ṽ (t−N+1, ·)‖2

Â0,Ω(tN+1)
+

1

2
‖Ṽ (t+0 , ·)‖2

Â0,Ω(t0)

+
1

2

N∑

n=1

‖Ṽ (t+n , ·) − Ṽ (t−n , ·)‖2
Â0,Ω(tn)

+
1

Re

N∑

n=0

(K̂ij Ṽ,j , Ṽ,i)En

+

N∑

n=0

∑

Ee
n∈T n

h

{
(δ − ε1(σ

T τ̂−1σ))‖D̂Ṽ ‖2
0,Ee

n
+

(1 − 1

ε1
)(1 − 1

ε2
)‖τ̂ 1

2 (L̂inv Ṽ − F̂V1 − Ŝ)‖2
0,Ee

n
+

(1 − 1

ε1
)(1 − ε2)

1

Re2 ‖τ̂1/2(K̂ij Ṽ,j),i‖2
0,Ee

n

}
.

Since τ̃ is element-wise constant, using the norm of τ̂ , which is defined as

‖τ̂‖ = max
i

{λi : λi ∈ sp (τ̂ )} = cmaxτm,

in combination with Lemma 4.4.2 and the bound on the stabilization parameter τm

(4.4.5), we obtain
∑

Ee
n∈T n

h

‖τ̂1/2(K̂ij Ṽ,j),i‖2
0,Ee

n
≤

∑

Ee
n∈T n

h

cmaxmk

2µCk
‖K̂ijṼ,j‖2

0,Ee
n

≤ cmax

2µ

∑

Ee
n∈T n

h

‖K̂ijṼ,j‖2
0,Ee

n
,

where in the last inequality we used the definition of mk (4.4.1) and the assumption

that µ is element-wise constant. Summarizing, we obtain the estimate

BN (V1, Ṽ ;V1, Ṽ ) ≥ 1

2
‖Ṽ (t−N+1, ·)‖2

Â0,Ω(tN+1)
+

1

2
‖Ṽ (t+0 , ·)‖2

Â0,Ω(t0)

+
1

2

N∑

n=1

‖Ṽ (t+n , ·) − Ṽ (t−n , ·)‖2
Â0,Ω(tn)

+

+

N∑

n=0

∑

Ee
n∈T n

h

{(
δ − ε1(σ

T τ̂−1σ)
)
‖D̂Ṽ ‖2

0,Ee
n

+ (1 − 1

ε1
)(1 − 1

ε2
)‖τ̂1/2(L̂inv Ṽ − F̂V1 − Ŝ)‖2

0,Ee
n

+ (1 − 1

ε1
)(1 − ε2)

cmax

2µRe2 ‖K̂ij Ṽ,j‖2
0,Ee

n
+

1

Re
(K̂ij Ṽ,j , Ṽ,i)Ee

n

}
.

(4.4.31)
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Define the coefficient α as

α = (1 − 1

ε1
)(ε2 − 1)

cmax

2µRe
, (4.4.32)

then we can always choose ε1 > 1 and ε2 > 1, but sufficiently close to one, such that

α is in the interval 0 < α < α∗. Applying Lemma 4.4.3, we obtain with α = ε3α
∗ the

relation

(K̂ij Ṽ,j , Ṽ,i)En
− α‖K̂ij Ṽ,j‖2

0,En

=
(

(K̂ij Ṽ,j , Ṽ,i)En
− α∗‖K̂ijṼ,j‖2

0,En

)

+ α∗(1 − ε3)‖K̂ij Ṽ,j‖2
0,En

≥ α∗(1 − ε3)‖K̂ij Ṽ,j‖2
0,En

,

for any 0 < ε3 < 1, where in the last inequality we used (4.4.21) with α = α∗.

For the remaining part of the coercivity proof we need to show that there exists an

ε1 > 1 such that the condition

δ − ε1(σ
T τ̂−1σ) > 0 (4.4.33)

is satisfied. In order to investigate (4.4.33), we consider the following function of ε1 :

f(ε1) = δ − ε1(σ
T τ̂−1σ), where δ > 0 and σT τ̂−1σ > 0. Observe that

f(ε1 = 1) =
1

ρT
τc − ω(ω + 1)

|u|2
T
τm. (4.4.34)

Note that f(ε1 = 1) > 0 is always satisfied since it is equivalent to condition (4.3.24)

on the positive definiteness of the stabilization operator τ̃ . Consequently, there exists

1 < ε1 < ε∗1 such that (4.4.33) is satisfied. Since in order to satisfy the condition

0 < α < α∗, with α given in (4.4.32), we only need a value ε1 > 1 arbitrary close to

one, hence we can always find an ε1 which satisfies both conditions.

Combining all terms, we obtain that for each element there exist ε1 > 1, ε2 > 1 and

0 < ε3 < 1 such that

BN (V1, Ṽ ;V1, Ṽ ) ≥ 1

2
‖Ṽ (t−N+1, ·)‖2

Â0,Ω(tN+1)
+

1

2
‖Ṽ (t+0 , ·)‖2

Â0,Ω(t0)

+
1

2

N∑

n=1

‖Ṽ (t+n , ·) − Ṽ (t−n , ·)‖2
Â0,Ω(tn)

+

N∑

n=0

∑

Ee
n∈T n

h

{ (1 − ε3)α
∗

Re
‖K̂ij Ṽ,j‖2

0,En

+
(
δ − ε1(σ

T τ̂−1σ)
)
‖D̂Ṽ ‖2

0,Ee
n
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+ (1 − 1

ε1
)(1 − 1

ε2
)‖τ̂1/2(L̂invṼ − F̂V1 − Ŝ)‖2

0,Ee
n

}

. (4.4.35)

The last step in the proof is to apply the Poincaré-Friedrichs inequality for V1, which

applies since
∫

En
V1dE = 0, and to use the Poincaré inequality for Ṽ , which is valid

since Ω is bounded and Ṽ = 0 at ∂Ω. Combining these inequalities results in the

estimate

‖V ‖0,En
≤ CP‖∇V ‖0,En

,

with CP the Poincaré constant. Introduce the coefficient

C = min
Ee

n∈T n
h

{

min

{

1,
(1 − ε3)α

∗

Re
, δ − ε1(σ

T τ̂−1σ), (1 − 1

ε1
)(1 − 1

ε2
)

}}

> 0,

then we can further evaluate (4.4.35) into

C

C2
P

N∑

n=0

‖V ‖2
0,En

≤ C |||V |||2∗ ≤ BN (V1, Ṽ ;V1, Ṽ ).

where

|||V |||2∗ =
1

2
‖Ṽ (t−N+1, ·)‖2

Â0,Ω(tN+1)
+

1

2
‖Ṽ (t+0 , ·)‖2

Â0,Ω(t0)

+
1

2

N∑

n=1

‖Ṽ (t+n , ·) − Ṽ (t−n , ·)‖2
Â0,Ω(tn)

+

N∑

n=0

∑

Ee
n∈T n

h

{

‖K̂ijṼ,j‖2
0,En

+ ‖D̂Ṽ ‖2
0,Ee

n

+ ‖τ̂1/2(L̂inv Ṽ − F̂V1 − Ŝ)‖2
0,Ee

n

}

(4.4.36)

Adding C
C2

P

|||V |||2∗ to the inequalities finally results in

C

1 + C2
P
|||V |||2 ≤ BN (V1, Ṽ ;V1, Ṽ ).

�

The following corollary shows the importance of the viscous contribution of L̂Ŵ in

the least-squares operator for small Reynolds numbers.

Corollary 4.4.1 The coercivity of the Galerkin least squares method (4.4.17), with

L̂Ŵ replaced by L̂invŴ , can only be guaranteed for Reynolds numbers Re � 1.
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Proof:

Similar as in Theorem 4.4.1, we find the following lower bound

B∗
N (V1, Ṽ ;V1, Ṽ ) ≥ 1

2
‖Ṽ (t−N+1, ·)‖2

Â0,Ω(tN+1)
+

1

2
‖Ṽ (t+0 , ·)‖2

Â0,Ω(t0)

+
1

2

N∑

n=1

‖Ṽ (t+n , ·) − Ṽ (t−n , ·)‖2
Â0,Ω(tn)

+ ‖V ‖2
0,E

+

N∑

n=0

∑

Ee
n∈T n

h

{(
δ − (ε1 +

1

2ε3
)(σT τ̂−1σ)

)
‖D̂Ṽ ‖2

0,Ee
n

+ (1 − 1

ε1
− 1

2ε2
)‖τ̂1/2(L̂invṼ − F̂V1 − Ŝ)‖2

0,Ee
n

+
1

Re
(K̂ij Ṽ,j , Ṽ,i)En

− (ε2 + ε3)
cmax

4µRe2 ‖K̂ij Ṽ,j‖2
0,Ee

n

}

. (4.4.37)

For all ε1 > 1, but sufficiently close to one, ε2 > ε1/(2(ε1 − 1)) and ε3 > 1/(2(1− ε1 +

ε∗)) > 0, with small ε∗ > 0, we can ensure that the first two coefficients depending on

ε1, ε2 and ε3 on the right-hand side of (4.4.37) are positive. It is, however, in general

not possible to choose ε2 and ε3 such that the condition

(ε2 + ε3)
cmax

4µRe
≤ α∗

is also satisfied, which is necessary in order to apply Lemma 4.4.3. This is only

possible if the Reynolds number Re is sufficiently larger than one. �

4.5 Concluding remarks

In this chapter we have derived a class of stabilization operators suitable for the incom-

pressible limit of the symmetrized formulation for the Navier-Stokes equations given in

[23]. This set of equations consists of the incompressible Navier-Stokes equations and

the heat equation. We derived a class of dimensionally consistent stabilization opera-

tors and give conditions which guarantee the positive definiteness of the stabilization

matrix and the coercivity of the Galerkin least squares finite element discretization for

the linearized problem. These are necessary conditions to ensure that the numerical

discretization is stable and results in a unique solution. The analysis also shows that

only for large Reynolds numbers it is possible to neglect the viscous operator acting

on the test functions in the stabilization operator.

Further research will be conducted towards the actual performance of the stabilization

operators discussed in this chapter and we will also report in the next chapter on our

research on stabilization operators for weakly compressible flows.
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Chapter 5

Construction of stabilization

operators for weakly compressible

flows

In this chapter we discuss several aspects of the design of stabilization operators for a

Galerkin least-squares finite element method suitable for both the compressible and

incompressible Navier-Stokes equations, as we described also in [45]. As mentioned

in Chapter 3, there is not much in common between the large variety of numerical

schemes developed for the compressible and incompressible Navier-Stokes equations.

The concept of symmetrized equations using entropy variables is, however, a good

starting point towards a unified formulation which is valid for both types of flows,

see [2]. Symmetrized equations using entropy variables in compressible flow, have

been investigated by Godunov [18], Mock [43], Harten [21], Hughes et al. [30], Dutt

[12] and Johnson et al. [37]. The use of the symmetrized compressible Navier-Stokes

equations employing entropy variables results in a global entropy stability which is

automatically inherited by the numerical discretization, see for instance Shakib et

al. [51]. This is not true when for instance conservative or primitive variables are

used. The concept of symmetrization is also important for incompressible flows which

we discussed in Chapter 3. For a detailed analysis of the entropy stability of the

symmetrized Navier-Stokes equations and the choice of variables, see Barth [3] and

Hauke and Hughes [23]. We will summarize the main results on entropy stability at

the end of this chapter.

The Galerkin method applied to the compressible Navier-Stokes equations lacks sta-

bility and spurious oscillations occur, generated for instance by unresolved internal

and boundary layers. To improve the stability of the method, while maintaining the

order of accuracy, a least-squares operator is added to the basic Galerkin formulation.

The Galerkin least-squares method is a linear method, therefore, produces oscillatory
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approximations to discontinuities due to Godunov’s theorem, see [54]. For non-smooth

solutions, there is therefore also a need for a so-called discontinuity-capturing oper-

ator to overcome oscillations around discontinuities. This term, introduced in [29],

provides additional control over the gradients in the discrete solution and increases

the robustness of the method. The discontinuity-capturing operator is, however, not

part of this study. For more details we refer to [29], [51].

The concept of a stabilization operator can also be used for incompressible flows, and,

as discussed in detail in Chapter 4, eliminates the complications of designing elements

which satisfy the inf-sup stability condition.

The development of stabilized methods, starting from it’s first applications till recent

results, as well as the different types of stabilization operators are described in detail

in the introduction of this thesis.

This chapter addresses two issues. The first one is the design of the stabilization

operator in the Galerkin least-squares finite element method, which is critical for the

accuracy and stability of the discretization. In Chapter 4 a stabilization operator is

proposed for the Galerkin least-squares discretization of the incompressible Navier-

Stokes equations using dimensional analysis and a careful verification of conditions

ensuring the positive definiteness of the stabilization matrix. In the construction

of the stabilization matrix for the compressible Navier-Stokes equations we use the

same concept as used in the incompressible case. This is, therefore, another example

of ideas that can be used for both types of flows.

We start the consistent mathematical derivation of the stabilization operator using

the primitive variables in the construction of the stabilization matrix and apply di-

mensional analysis to determine its dependence on the flow variables. Next, this

systematic derivation of the stabilization operator for the primitive variables is ex-

tended to the set of entropy variables. In [23], Hauke and Hughes demonstrated that

using either the primitive variables employing pressure or the entropy variables, the

same formulation can be used to compute both compressible and incompressible flows.

The difficulty of this unified approach is to design a stabilization matrix which is valid

for both type of flows. In general, the compressible stabilization matrix is not well

defined in the incompressible limit and conversely, the incompressible stabilization is

not effective for transonic and supersonic flows. In the same paper, the authors give

a first attempt to define a stabilization matrix suitable for both compressible and in-

compressible flows. This is however, based on numerical experiments and the authors

emphasize the need of further research to define a suitable stabilization matrix. It

is, therefore very challenging to give a unified formulation of stabilization operators,

valid for both compressible and incompressible flows. We will demonstrate that the

consistent construction of stabilization operators discussed in this chapter is applica-

ble to both flow regimes. The resulting stabilization matrix is also well defined in the

incompressible limit since it is identical to the stabilization matrix we obtained for
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incompressible flows in Chapter 4 of this thesis. Note however, that our definition of

the unified stabilization matrix is restricted to weakly compressible flows.

The second topic of this chapter is the analysis of the proposed stabilization operator

in order to ensure non-linear stability. The Galerkin least-squares method using the

symmetrized form of the equations satisfies the Clausius-Duhem inequality or entropy

condition, which results in a non-linear stability condition, as discussed in [3] and [50].

Therefore, we give necessary and sufficient conditions on the positive definiteness of

the stabilization operator. These conditions provide additional information on the

admissible stabilization operators.

5.1 The Galerkin least-squares variational formula-

tion

Consider the compressible Navier-Stokes equations in a time-dependent flow domain

Ω(t). Let Y : E 7→ R5 denote the vector of primitive variables (p, u1, u2, u3, T )T

and Φ : R5 7→ R5×4 the flux tensor defined in (4.1.1), with the flux vector in the

`th coordinate direction F`, (` = 0, . . . , 3) given by the columns of Φ. Using these

notations, the compressible Navier-Stokes equations can be written in conservative

form as

F`(Y (x)),` − (Kij(Y (x))Y,j),i = 0, x ∈ E , (5.1.1)

where Kij ∈ R5×5 for i, j = 1, 2, 3 denote the viscous flux Jacobian matrices and

the summation convention is used on repeated indices. In [23], Hauke and Hughes

demonstrated that using either the variables Y or the entropy variables V, defined in

(3.2.2), the incompressible limit of the Navier-Stokes equations is well defined.

Introducing the set of entropy variables V into the quasi-linear form (5.1.1), we obtain

the symmetrized form of the compressible Navier-Stokes equations (see for details

Chapter 3) as:

Ã0(V )V,t + Ãi(V )V,i = (K̃ij(V )V,j),i,

with Ã0, Ãi and K̃ij given in Appendix B.1. Note that the coefficient matrices Ã`

are expressed in terms of the volume expansivity αp, isothermal compressibility βT

and specific heat at constant pressure cp, whereas the viscous flux Jacobian matrices

do not depend on these compressibility parameters.

Before presenting the Galerkin least-squares method, we need to introduce some no-

tations. We use the same notations for the partitioning of the space-time domain as

in Section 4.2 and for completeness, we briefly summarize them here.

Consider a partitioning of the time interval I = (t0, tN+1) using the time levels t0 <

t1 < . . . < tN+1.We denote by In = (tn, tn+1) the nth time interval and define a space-

time slab as En = E ∩ In. Each space-time slab En is bounded by the hypersurfaces
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Ω(tn), Ω(tn+1) and Qn = ∂En\(Ω(tn)∪Ω(tn+1)). In each space-time slab En we define

a partition T n
h into (ne)n non-overlapping elements Ee

n. The space-time elements Ee
n are

obtained by splitting the spatial domain Ω(tn) into a set of non-overlapping elements

Ωe
n and connecting them with a mapping Φn

t to the elements Ωe
n+1 ⊂ Ω(tn+1) at time

tn+1.

Since we are working with two different sets of variables, the corresponding finite

element spaces need to be defined. The trial function spaces for entropy and primitive

variables in each space-time slab En are denoted by Sn
V and Sn

Y , respectively, and the

test function space by Wn
V and Wn

Y . Their elements are assumed to be C0 continuous

within each space-time slab, but discontinuous across the interfaces of the space-time

slabs, namely at times t1, t2, . . . , tN−1. The finite element spaces are now defined as:

Sn
V =

{
V ∈ C0(En)5 : V |Ee

n
◦Ge

n ∈
(

P̂1(0, 1) ⊗ P̂k(Ω̂)
)5

,

∀ Ee
n ∈ T n

h , q1(V ) = q̄1 on Qn

}

Wn
V =

{
W ∈ C0(En)5 : W |Ee

n
◦Ge

n ∈
(

P̂1(0, 1) ⊗ P̂k(Ω̂)
)5

,

∀ Ee
n ∈ T n

h , q2(W ) = q̄2 on Qn

}
,

where Ge
n denotes the mapping from the space-time reference element (0, 1) × Ω̂,

with Ω̂ the reference element in R3, to the element in physical space Ee
n and P̂k

represent kth-order polynomials. Further, q1 : E5 → R5 are the (nonlinear) boundary

conditions, with a similar expression for q2 : E5 → R5, and q̄1, q̄2 ∈ R5 are the

prescribed boundary conditions. When the finite element spaces are defined on the

whole space-time domain then the superscript n is omitted. The finite element spaces

for the primitive variables can be defined analogously.

Recall the Galerkin least-squares variational formulation for the compressible Navier-

Stokes equations in terms of the entropy variables:

Find V ∈ SV such that for all W ∈ WV the following relation is satisfied:

N∑

n=0

{ ∫

En

(

−W,0 · F0(V ) −W,i · Fi(V ) +W,i · K̃ijV,j

)

dE

+

∫

Ω(tn+1)

W (t−n+1) · F0(V (t−n+1))dΩ −
∫

Ω(tn)

W (t+n ) · F0(V (t−n ))dΩ

+

(nel)n∑

e=1

∫

Ee
n

(LT
V W ) · τ̃ (LV V )dE

+

∫

Qn

W ·
(

Fi(V ) − K̃ijV,j

)

n̄i dQ−
∫

Qn

n̄ · v(W · F0(V ))dQ
}

= 0, (5.1.2)
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5.1. The Galerkin least-squares variational formulation

where n is the unit outward space-time normal vector at the boundary Qn and n̄

its the spatial component. The compressible Navier-Stokes differential operator for

entropy variables is given by

LV = Ã0(V )
∂

∂x0
+ Ãi(V )

∂

∂xi
− ∂

∂xi

(

K̃ij(V )
∂

∂xj

)

.

Similarly, for the primitive variables the weak formulation is given by:

Find Y ∈ SY such that for all W ∈ WY the following relation is satisfied:

N∑

n=0

{ ∫

En

(

−W,0 · F0(Y ) −W,i · Fi(Y ) +W,i ·Kij(Y )Y,j

)

dE

+

∫

Ω(tn+1)

W (t−n+1) · F0(Y (t−n+1))dΩ −
∫

Ω(tn)

W (t+n ) · F0(Y (t−n ))dΩ

+

(nel)n∑

e=1

∫

Ee
n

(LT
Y W ) · τY (LY Y )dE

+

∫

Qn

W ·
(

Fi(Y ) −Kij(Y )Y,j

)

n̄i dQ−
∫

Qn

n̄ · v(W · F0(Y ))dQ
}

= 0. (5.1.3)

The compressible Navier-Stokes equations written in terms of the primitive variables

Y have the form

LY Y = A0(Y )Y,0 +Ai(Y )Y,i − (Kij(Y )Y,j),i = 0, (5.1.4)

with the coefficient matrices A`(Y ) and Kij(Y ) given in Appendix B.2. Note that

the Jacobian matrices for primitive variables A`(Y ) can also be expressed using the

compressibility parameters αp and βT and the specific heat cp, and also for this

set of variables the viscous flux Jacobian matrices Kij(Y ) do not depend on these

parameters. As discussed in earlier sections, this formulation is also suitable for the

incompressible limit.

The transposed of the differential operator for primitive variables is defined by

LT
Y = AT

` (Y )
∂

∂x`
− ∂

∂xi

(

KT
ij(Y )

∂

∂xj

)

for ` = 0, . . . , 3, i, j = 1, 2, 3.

Note that when entropy variables are used, LV = LT
V because of the symmetry of

the coefficient matrices. The first and the last two integrals in (5.1.3) result from the

partial integration of the Galerkin term expressed as a function of the variables Y.

The jump term remains unchanged through the change of variables, with the fluxes

written in terms of the primitive variables Y. The weak formulations for primitive

and entropy variables can be transformed one into the other which implies that the

stabilization parameters for the two sets of variables are related as

τY = Y,V τ̃ .
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Chapter 5. Construction of stabilization operators for weakly compressible flows

5.2 Dimensional analysis

In order to derive a dimensionally consistent stabilization operator in the Galerkin

least-squares discretization of the incompressible Navier-Stokes equations, we intro-

duced in Section 4.3 the concept “a scales like b.” Using the definitions of Section

4.3, and following the same procedure as used for incompressible flows, we will derive

now a dimensionally consistent stabilization matrix suitable for both compressible

and incompressible flows. The main steps in the construction are:

• Dimensional analysis of the stabilization matrix τY related to the primitive

variables Y = (p, u1, u2, u3, T )T .

• The stabilization operator τY is related to the stabilization operator for the

entropy variables τ̃ through the transformation

τ̃ = V,Y τY . (5.2.1)

Our first goal is to derive a dimensionally consistent stabilization operator for the

compressible Navier-Stokes equations in primitive variables. We first consider the

equations LY Y = 0, with Y = (p, u1, u2, u3, T )T the set of primitive variables.

Consider the canonical set V = {u, T, ρ, l}, and the set of reference values r(V) =

{U,Θ, R, L},with U,Θ, R and L the reference values for velocity, temperature, density

and length, respectively, as defined in Section 4.3. Using the definition of equivalence

classes introduced in Section 4.3, the coefficients of the volume expansivity αp and

isothermal compressibility βT , obey the following scaling relations

[αp]V =
1

Θ
, [βT ]V =

1

RU2
. (5.2.2)

Hence, using the definition of the various vectors and matrices given in the Appendix

B.2, the following dimensional equivalence is valid

[Y,0]V =
U

L










RU2

U

U

U

Θ










, [Y,i]V =
U

L










RU

1

1

1

Θ/U










,

[A0(Y )]V =












1/U2 0 0 0 R/Θ

1/U R 0 0 RU/Θ

1/U 0 R 0 RU/Θ

1/U 0 0 R RU/Θ

1 RU RU RU RU2/Θ












,
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5.2. Dimensional analysis

[Ai(Y )]V =












1/U δ1iR δ2iR δ3iR RU/Θ

1 RU δ2iRU δ3iRU RU2/Θ

1 δ1iRU RU δ3iRU RU2/Θ

1 δ1iRU δ2iRU RU RU2/Θ

U RU2 RU2 RU2 RU3/Θ












,

where δij is the Kronecker delta symbol. For the viscosity coefficient matrices we

obtain for i = j:

[Kii(Y )]V = L










0 0 0 0 0

0 RU 0 0 0

0 0 RU 0 0

0 0 0 RU 0

0 RU2 RU2 RU2 RU3/Θ










,

and for i 6= j we have

[Kij(Y )]V = L










0 0 0 0 0

0 0 a12RU a13RU 0

0 a21RU 0 a23RU 0

0 a31RU a32RU 0 0

0 b11RU
2 b22RU

2 b33RU
2 0










,

with i, j = 1, 2, 3. The coefficients in the matrices Kij(Y ) are defined as

akl =

{

1 if (k = i ∧ l = j) ∨ (k = j ∧ l = i)

0 otherwise
bkk =

{

1 if k = i ∨ k = j

0 otherwise,

for k, l = 1, 2, 3. By dimensional consistency, we can add the various contributions

and obtain the following dimensional equivalence for the Navier-Stokes equations

[LY Y ]V = [A0(Y )Y,0 +Ai(Y )Y,i − (Kij(Y )Y,j),i]V =
RU

L
(1, U, U, U, U2)T . (5.2.3)

Requirement 5.2.1 Construct a stabilized finite element method, which satisfies the

following requirements:

(a) The method admits discrete solutions Y h with the same dimension as the solu-

tion Y of (5.1.4).

(b) Elementwise the least-squares stabilization operator is dimensionally equivalent

with the Galerkin operator.

Similar assumptions are made in [58], where a scaling analysis is performed to deter-

mine the appropriate low Mach number behavior of the stabilization matrix. These

requirements imply
[
(LT

Y W ) · τY (LY Y )
]

V = [W · (LY Y )]V , ∀W ∈Wn
h ,
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Chapter 5. Construction of stabilization operators for weakly compressible flows

which is equivalent with

1

L

((

U [AT
0 (Y )]V + [AT

i (Y )]V − 1

L
[KT

ij(Y )]V

)

[W ]V

)T

[τY (LY Y )]V = [W T ]V [(LY Y )]V

(5.2.4)

where the scales U and 1/L originate from the derivatives of the test function. Note

that using [µ]V = RUL and [κ]V = RU3L/Θ, it follows that Ai(Y ) ∼V (1/L)Kij(Y )

for all i, j = 1, 2, 3, hence the addition and subtraction are well defined in (5.2.4).

Since the test functions are arbitrary, equation (5.2.4) is equivalent to

1

L

(

U [A0(Y )]V + [Ai(Y )]V − 1

L
[Kij(Y )]V

)

[τY ]V [(LY Y )]V = [(LY Y )]V . (5.2.5)

Therefore, requirements (a) and (b) provide an additional condition on the compo-

nents of the stabilization matrix τY , i.e., (5.2.5) is equivalent to:

1

L










1/U R R R RU/Θ

1 RU RU RU RU2/Θ

1 RU RU RU RU2/Θ

1 RU RU RU RU2/Θ

U RU2 RU2 RU2 RU3/Θ










[τY ]V [(LY Y )]V = [(LY Y )]V . (5.2.6)

Consider an arbitrary nonsingular matrix M represented by the matrix in (5.2.6),

that is

[M ]V =
1

L










1/U R R R RU/Θ

1 RU RU RU RU2/Θ

1 RU RU RU RU2/Θ

1 RU RU RU RU2/Θ

U RU2 RU2 RU2 RU3/Θ










.

Note that such nonsingular matrix always exist since the constants in the matrix are

arbitrary and each class is closed to linear combinations. We can, therefore write

(5.2.6) as

[MτY ]V [(LY Y )]V = [(LY Y )]V , (5.2.7)

where we used the property [M ]V [τY ]V = [MτY ]V . The scaling relation (5.2.7) shows

that a suitable stabilization matrix τY is dimensionally equivalent to the inverse of

the nonsingular matrix M , i.e.,

[M−1]V = [τY ]V . (5.2.8)
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5.2. Dimensional analysis

Therefore, we obtain that the stabilization matrix τY has the following scaling prop-

erty

[τY ]V = L












U 1 1 1 1/U

1/R 1/(RU) 1/(RU) 1/(RU) 1/(RU 2)

1/R 1/(RU) 1/(RU) 1/(RU) 1/(RU 2)

1/R 1/(RU) 1/(RU) 1/(RU) 1/(RU 2)

Θ/(RU) Θ/(RU2) Θ/(RU2) Θ/(RU2) Θ/(RU3)












,

which defines the structure of a dimensionally consistent stabilization matrix τY .

It is important to note that we did not require that τY = M−1. Moreover, it is

straightforward to see that using (5.2.8) we obtain

[M ]V [τY ]V =










1 1/U 1/U 1/U 1/U2

U 1 1 1 1/U

U 1 1 1 1/U

U 1 1 1 1/U

U2 U U U 1










,

which satisfies condition (5.2.7). Summarizing, we write the general form of the

stabilization matrix in primitive variables, indicating the dimension of the entries in

the matrix, as

τY = L























c11U c12 c13 c14
c15
U

c21
R

c22
RU

c23
RU

c24
RU

c25
RU2

c31
R

c32
RU

c33
RU

c34
RU

c35
RU2

c41
R

c42
RU

c43
RU

c44
RU

c45
RU2

c51Θ

RU

c52Θ

RU2

c53Θ

RU2

c54Θ

RU2

c55Θ

RU3























, (5.2.9)

where cij are functions of the dimensionless variables and R,U,Θ, L the reference

density, velocity, temperature and length, respectively. In this form the matrix still

has 25 unknowns which need to be specified. In the remaining part of this chapter

we will specify the coefficients cij in the stabilization matrix τY (5.2.9) such that

it is suitable for both compressible and incompressible flow. The first step towards

this is a discussion on the asymptotic behavior of the stabilization matrix τY in the

incompressible limit, given in the next section.
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Chapter 5. Construction of stabilization operators for weakly compressible flows

5.3 The asymptotic behavior of the stabilization

matrix in the incompressible limit

Recall the following thermodynamic relation between the specific heats, valid for any

type of material:

cp − cv =
α2

pvT

βT
. (5.3.1)

Use the dimensional identity

[cp − cv ]V =
U2

Θ
=

[

α2
pvT

βT

]

V
,

and consider (5.3.1) in the dimensionless form. In the incompressible limit cp = cv ,

as we discussed in Section 2.2.1, therefore, for αp = 0 and βT = 0, we have

α2
pvT

βT
= 0

which is only possible, since v and T are bounded, when α2
p = O

(
β1+ε

T

)
for ε > 0, as

βT → 0. Equivalently,

αp = O(βδ
T ), with δ =

1

2
+
ε

2
, ε > 0 as βT → 0. (5.3.2)

Additional to Requirement 5.2.1, we add the following condition:

Requirement 5.3.1 The asymptotic behavior of the Galerkin and least-squares sta-

bilization operator are identical in the incompressible limit, that is ∀W ∈ W n
h the

following is satisfied

(LT
Y W ) · τY (LY Y ) ∼W · (LY Y ), as αp → 0, βT → 0,

where the relation ∼ denotes asymptotic behavior.

Since the test function is arbitrary and the flux Jacobian matrices Ai(Y ) and the

Navier-Stokes equations LY Y posses the following properties, respectively,

Ai(Y ) =













O(βT ) O(1) O(1) O(1) O(αp)

O(1) O(1) O(1) O(1) O(αp)

O(1) O(1) O(1) O(1) O(αp)

O(1) O(1) O(1) O(1) O(αp)

O(1) O(1) O(1) O(1) O(1)













, LY Y =













O(1)

O(1)

O(1)

O(1)

O(1)












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5.4. Construction of the stabilization matrix

as αp → 0 and βT → 0, we obtain that Requirement 5.3.1 implies that a suitable

stabilization matrix should have the following asymptotic behavior

τY =














O(1) O(1) O(1) O(1) O(αp)

O(1) O(1) O(1) O(1) O(αp)

O(1) O(1) O(1) O(1) O(αp)

O(1) O(1) O(1) O(1) O(αp)

O(1) O(1) O(1) O(1) O(1)














as αp → 0, βT → 0. (5.3.3)

The asymptotic behavior can also be expressed using βT by introducing (5.3.2) into

(5.3.3), and we obtain that the stabilization matrix for nearly incompressible flow

must behave like

τY =














O(1) O(1) O(1) O(1) O(βδ
T )

O(1) O(1) O(1) O(1) O(βδ
T )

O(1) O(1) O(1) O(1) O(βδ
T )

O(1) O(1) O(1) O(1) O(βδ
T )

O(1) O(1) O(1) O(1) O(1)














as βT → 0,

with δ > 1/2. The asymptotic behavior of τY as αp → 0, obtained in (5.3.3) will be

used in the next section to give an explicit form of the stabilization matrices τY and

τ̃ .

5.4 Construction of the stabilization matrix

The dimensionally consistent stabilization matrix obtained in (5.2.9), in combination

with the analysis on its asymptotic behavior in the incompressible limit results in the

following class of stabilization operators.

Theorem 5.4.1 A class of dimensionally consistent stabilization matrices τY for

primitive variables with a well defined incompressible limit as αp → 0 can be stated as

τY =








τc ρ(ω + 1) (τm + (h− k)αpτe)u
T 2ραpτek

ω (τm + (h− k)αpτe) u I3×3τm αpτeu

−(h− k)τe (αpT − 1)τeu
T τe








(5.4.1)

where u = (u1, u2, u3)
T is the velocity vector, h the specific enthalpy, k = |u|2/2,

ω ∈ R and τc, τm, τe ∈ R+.
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Proof:

Let us write

c25
RU2

= τru1,
c35
RU2

= τru2,
c45
RU2

= τru3 (5.4.2)

for some τr ∈ P (S). This relation implies that [τr]V = 1/(RU3). Using the symmetry

of τ̃ and (5.2.1), we obtain the following relations for the coefficients cij in (5.2.9):

c23 = c32, c24 = c42, c34 = c43, (5.4.3)

c12 =
ρ(c22u1 + c23u2 + c24u3 + c21U)

RU
+ ρu1τr(h+ k) − c15u1

U
,

c13 =
ρ(c23u1 + c33u2 + c34u3 + c31U)

RU
+ ρu2τr(h+ k) − c15u2

U
,

c14 =
ρ(c24u1 + c34u2 + c44u3 + c41U)

RU
+ ρu3τr(h+ k) − c15u3

U
,

c51 = − (h− k)c55
U2

− τrRUT |u|2
Θ

+
RTc15
ρΘ

,

c52 = −u1c55
U

+
τrRU

2Tu1

Θ
,

c53 = −u2c55
U

+
τrRU

2Tu2

Θ
,

c54 = −u3c55
U

+
τrRU

2Tu3

Θ
.

Since [k]V = [h]V = U2, all operations in the above relations are valid. Consider

now the middle 3 × 3 block in (5.2.9), which corresponds to the three momentum

equations. Relation (5.4.3) implies that this block is symmetric. Moreover, this block

must be rotational invariant, which together with it’s symmetry, implies that it is a

constant times the identity matrix. The coefficients must therefore satisfy the relation

c22 = c33 = c44 = c and c23 = c32 = c24 = c42 = c34 = c43 = 0. For simplicity we

introduce the following notation for the diagonal entries in τY ,

τc := c11UL, τm :=
cL

RU
, τe :=

c55LΘ

RU3
. (5.4.4)

Then, we can write

c51 = −RU(h− k)

LΘ
τe −

τrRUT |u|2
Θ

+
RTc15
ρΘ

, c52 =
RU2(τrLT − τe)u1

LΘ
,

c53 =
RU2(τrLT − τe)u2

LΘ
, c54 =

RU2(τrLT − τe)u3

LΘ
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and obtain the relations

c12 =
ρu1

L
τm +

ρ

R
c21 + ρu1(h+ k)τr −

c15u1

U
, (5.4.5)

c13 =
ρu2

L
τm +

ρ

R
c31 + ρu2(h+ k)τr −

c15u2

U
, (5.4.6)

c14 =
ρu3

L
τm +

ρ

R
c41 + ρu3(h+ k)τr −

c15u3

U
. (5.4.7)

Since τm 6= 0, it follows from (5.4.5-5.4.7) that there are at least three additional

non-vanishing entries in the matrix τY . The vector composed of (c12, c13, c14)
T , is

multiplied in the least-squares operator with the momentum equations, which are

rotational invariant, and this implies that (c12, c13, c14)
T must also be rotational in-

variant. We can therefore write (c12, c13, c14)
T = ηu, with u = (u1, u2, u3)

T and the

scalar [η]V = 1/U. Using (5.4.5-5.4.7) we obtain the following relations

ρ

R
(c21, c31, c41)

T =
(

η −
(ρτm
L

+ ρ(h+ k)τr −
c15
U

))

u.

Since [η]V = [ ρ
Lτm]V , we can choose

η = (ω + 1)
(ρτm
L

+ ρ(h+ k)τr −
c15
U

)

with ω ∈ R. Therefore,

(c12, c13, c14)
T = (ω + 1)

(ρτm
L

+ ρ(h+ k)τr −
c15
U

)

u,

ρ

R
(c21, c31, c41)

T = ω
(ρτm
L

+ ρ(h+ k)τr −
c15
U

)

u.

For notational simplicity let us choose

c15L

U
= ρf, τrL = g. (5.4.8)

Therefore,

[f ]V =
L

RU
, [g]V =

L

RU3
(5.4.9)

and introducing (5.4.8) into the entries of τY in (5.2.9), we obtain

L(c12, c13, c14)
T = (ω + 1) (ρτm + ρ(h+ k)g − ρf)u,

L

R
(c21, c31, c41)

T = ω (τm + (h+ k)g − f)u.

Furthermore,

c51LΘ

RU
= −(h− k)τe − τrL|u|2T +

c15LT

ρU
= −(h− k)τe − g|u|2T + fT

c5iLΘ

RU2
= (τrLT − τe)ui−1 = (gT − τe)ui−1, i = 2, 3, 4.
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Inserting all relations for the constants cij , i, j = 1, . . . , 5 into (5.2.9), we obtain the

general form of the stabilization matrix (5.4.1).

In order to obtain the proper asymptotic behavior in the incompressible limit we

define f and g as follows

f = αpτe|u|2, g = αpτe.

This definition satisfies the scaling requirement (5.4.8). Furthermore, the analysis of

the asymptotic behavior of τY in (5.3.3) implies that in their dimensionless form, f

and g should have the following asymptotic behavior in the incompressible limit

f = O(αp), g = O(αp), when αp → 0,

which together with the scaling argument motivates their definition. This ensures

that a well posed stabilization operator is obtained in the incompressible limit, which

reduces to the stabilization operator (4.3.13) for the incompressible Navier-Stokes

equations discussed in Chapter 4. �

Theorem 5.4.2 The stabilization matrix τ̃ related to the entropy variables is com-

posed of

τ̃11 =
1

ρT
τc −

ω|u|2
T

τm +

(
h− k

T

)2

τe −
ω|u|2(h− k)τe

T
αp,

τ̃1i+1 =
ωui

T
τm +

(h− k)uiτe
T

(
1

T
+ ωαp

)

i = 1, 2, 3,

τ̃15 = − (h− k)τe
T 2

τ̃ii =
τm
T

+
u2

i τe
T

(
1

T
− αp

)

, i = 2, 3, 4,

τ̃ij =
ui−1uj−1τe

T

(
1

T
− αp

)

, i 6= j, i, j = 2, 3, 4,

τ̃i5 = −ui−1τe
T

(
1

T
− αp), i = 2, 3, 4,

τ̃55 =
τe
T 2
.

Proof:

The stabilization operator τ̃ can be obtained directly using the transformation (5.2.1),

with τY given by (5.4.1). It is straightforward to see that in the incompressible limit,

the stabilization matrix for entropy variables reduces to the stabilization operator

(4.3.14) obtained for the symmetrized incompressible Navier-Stokes equations. �

Our next aim is to show that the stabilization matrix τ̃ in Theorem 5.4.2 is positive

definite, which is a necessary and sufficient condition for entropy stability as will be

discussed in Section 5.5. For this purpose we make the following assumption:
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5.4. Construction of the stabilization matrix

Assumption 5.4.1 Assume there is a temperature range such that the relation

αp ≤ 1

T
(5.4.10)

is valid.

This assumption is valid for many equations of state. Consider some examples of gas

laws when αp can be given analytically, as in Section 2.4.2.

• It is straightforward to see that (5.4.10) is satisfied for the ideal gas law, since

αp = 1/T, and for the co-volume equation of state, since in this case

αp =
v − b

Tv
<

1

T
,

since b > 0s.

• For the van der Waals equation of state we have

αp =
(v − b)v2R

v3RT − 2a(v − b)2
. (5.4.11)

Let us first analyze for what temperature range (5.4.10) is satisfied, with αp

given by (5.4.11). When αp < 0, then (5.4.10) is straightforward. Consider the

case when αp > 0, which is satisfied, when v − b > 0 in (5.4.11) and in the

temperature range

T >
2a(v − b)2

v3R
= Tc. (5.4.12)

Condition (5.4.10) is equivalent with finding for which temperature range the

following function has negative values

d(T ) = αp − 1

T
=

−v2bRT + 2a(v − b)2

T (v3RT − 2a(v − b)2)
,

which implies using (5.4.12) that

d(T ) < 0 ⇐⇒ T >
2a(v − b)2

v2Rb
= T ?.

Since v > b, it follows that Tc < T ?, therefore, we can conclude that (5.4.10) is

satisfied if T > T ?.

• In Figure 5.1 some measured values of αp for water at different temperatures

are plotted as well as the function 1/T , for the temperature range 243K ≤ T ≤
373K, showing that Assumption 5.4.1 is also valid for this case.

91



Chapter 5. Construction of stabilization operators for weakly compressible flows

240 260 280 300 320 340 360 380
−2

−1

0

1

2

3

4

5
x 10

−3

α
p

1/T

T 

Figure 5.1: Measured values of αp for water at different temperatures showing that

αp is less than 1/T.

• Consider p and T as independent variables in a weakly compressible flow.

As we discussed in Chapter 2 there are two intensive equations of state for

the system. One of the equations of state relates density to temperature and

pressure. Consider the total differential of the specific volume given by (2.3.1)

dv = αpv dT − βT v dp. (5.4.13)

Since our interest is the range of weakly compressible flows, we assume pressure

changes to be negligible. Then, (5.4.13) reduces to

dρ = −ραpdT (5.4.14)

where ρ = 1/v is the density. The temperature can then be considered as a

function of the density only and the following expansion of the temperature is

valid

T = Tr +
∂T

∂ρ

∣
∣
∣
∣
ρ=ρr

(ρ− ρr) +O((ρ − ρr)
2),

where Tr and ρr are constant reference values of temperature and density. In

case of weakly compressible flows the changes in density are small, therefore,

we can neglect the higher order terms and obtain

T ≈ Tr +
∂T

∂ρ

∣
∣
∣
∣
ρ=ρr

(ρ− ρr).
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In combination with (5.4.14) this leads to an equation of state for a weakly

compressible fluid in terms of the volume expansivity at the reference values,

defined as

αpr = − 1

ρr

(
∂ρ

∂T

)

p

∣
∣
∣
∣
∣
ρ=ρr

,

viz.

T − Tr = − 1

αprρr
(ρ− ρr).

Note that similar idea was used in [8] and [40] to obtain an equation of state for

a slightly compressible fluid in terms of the bulk modulus. Therefore, we can

express αpr as

αpr =
1 − ρ/ρr

T/Tr − 1

1

Tr
<

1

Tr
,

where in the last inequality we assumed (without loss of generality) that the

reference values were chosen such that

1 − ρ/ρr

T/Tr − 1
≤ 1,

which is possible since the reference values are arbitrary. Hence, under the

assumption that the fluid is slightly compressible it is possible to satisfy As-

sumption 5.4.1.

�

In Theorem 4.3.2 of Chapter 4, we gave necessary and sufficient conditions on the

stabilization parameters τc, τm, τe and ω such that the stabilization matrix τ̃ designed

for incompressible flows is positive definite. In the next theorem we give similar

conditions to guarantee the positive definiteness of the stabilization matrix τ̃ for

compressible flows stated in Theorem 5.4.2. Note, however, that we have an additional

parameter αp in the compressible stabilization matrix, which significantly complicates

the analysis.

Theorem 5.4.3 Under the condition stated in Assumption 5.4.1, the stabilization

matrix τ̃ given in Theorem 5.4.2 is positive definite if and only if the following con-

ditions on the stabilization parameters τc, τm, τe and ω are satisfied






τm > 0

τe > 0

τc > F(αp, ω)

(5.4.15)

where F(αp, ω), with αp, ω ∈ R, is given as

F(αp, ω) =
a(αp) ω

2 + b(αp) ω + c(αp)

g(αp)
(5.4.16)
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with

a(αp) = ρ|u|2
(
2τm + αpτe(2h− |u|2)

)2

b(αp) = 2ρ|u|2
(
2τm + αpτe(2h− |u|2)

) (
τm + αpτe(2h− |u|2αpT )

)

c(αp) = ρ|u|2τ2
e α

2
p(2h− |u|2)2

g(αp) = 4
(
τm + |u|2τeαp(1 − αpT )

)
.

Proof:

Assume that τ̃ is positive definite. Then, all eigenvalues of τ̃ are real and positive.

Since τm is an eigenvalue of τ̃ , it follows that τm > 0. From the positive definiteness

of τ̃ it follows that all it’s principal submatrices are also positive definite, therefore

τe > 0. Moreover, all minor principals of τ̃ are positive definite. Since τe > 0 and

τm > 0, this implies the following system of five inequalities, which is obtained using

MAPLE:

τc > fi(αp, ω), ∀i ∈ {1, . . . , 5}, (5.4.17)

where fi are given functions of αp and ω. The explicit form of fi(αp, ω), for i = 1, . . . , 4,

can be obtained as:

f1(αp, ω) = F (0), f2(αp, ω) = F (u2
1),

f3(αp, ω) = F (u2
1 + u2

2), f4(αp, ω) = F (|u|2),

using the following functional

F (X) =
ρ
[
τee

2(−τm + αpτeX) − 2e1
[
τeX(αpT |u|2 − 2h) − τmT |u|2

]
ω + e21TXω

2
]

4[τmT + τeX(1 − αpT )]

with 0 ≤ X ≤ |u|2, e = |u|2 − 2h and e1 = 2τm − αpτee. Note that the denominator

of F (X) is vanishing when

αp =
1

T
+

τm
τeX

>
1

T
,

where in the last inequality we used that τm > 0 and τe > 0. This is, however, not

possible when Assumption 5.4.1 applies because then αp ≤ 1/T. Hence, F (X) is well

defined for all αp ≤ 1/T.

Furthermore, we can write f5 in the following form

f5(αp, ω) =
a(αp) ω

2 + b(αp) ω + c(αp)

g(αp)
(5.4.18)
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with

a(αp) = ρ|u|2
(
2τm + αpτe(2h− |u|2)

)2 ≥ 0

b(αp) = 2ρ|u|2
(
2τm + αpτe(2h− |u|2)

) (
τm + αpτe(2h− |u|2αpT )

)

c(αp) = ρ|u|2τ2
e α

2
p(2h− |u|2)2 ≥ 0

g(αp) = 4
(
τm + |u|2τeαp(1 − αpT )

)
.

Note that,

g(αp) = 0 ⇐⇒ αp,m
p =

|u|τe ±
√

|u|2τ2
e + 4τmτeT

2|u|τeT
,

where the superscripts p and m refer to the roots taken with + and − sign, respec-

tively. Since τm > 0 and τe > 0, it follows that αm
p < 0 and αp

p > 1/T. Therefore,

using Assumption 5.4.1 it follows that g(αp) > 0 for αm
p < αp ≤ 1/T and also f5 is

well defined in this range.

Next, we show now that the system of inequalities (5.4.17) is simultaneously satisfied

if and only if the following inequality is satisfied

τc > f5(αp, ω), (5.4.19)

which results from the condition that the determinant of τ̃ must be positive. If (5.4.17)

holds, then (5.4.19) is obviously true. Reversely, assuming that (5.4.19) is valid, it is

sufficient to show that all the following functions are positive:

gi(αp, ω) = fi+1(αp, ω) − fi(αp, ω), i = 1, . . . , 4, (5.4.20)

since this implies

τc > f5 > · · · > f1.

Using the functional form of the functions fi, we can write gi as:

g4(αp, ω) =
ρτe h

2
4(αp, ω)

4 [τm + τe|u|2αp(1 − αpT )] [τmT + τe|u|2(1 − αpT )]

g3(αp, ω) =
ρτmu

2
3 h

2
3(αp, ω)

4 [τmT + τe|u|2(1 − αpT )] [τmT + τe(u2
1 + u2

2)(1 − αpT )]

g2(αp, ω) =
ρτmu

2
2 h

2
2(αp, ω)

4 [τmT + τeu2
1(1 − αpT )] [τmT + τe(u2

1 + u2
2)(1 − αpT )]

g1(αp, ω) =
ρu2

1 h
2
1(αp, ω)

4T [τmT + τeu2
1(1 − αpT )]

where hi, for i = 1, . . . , 4 are given functions of αp and ω. More specifically,

h3(αp, ω) = h2(αp, ω) = h1(αp, ω) = τe(2h− |u|2) + T
(
2τm + αpτe(2h− |u|2)

)
ω,
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and

h4(αp, ω) = τm(2h− |u|2) − (1 − αpT )|u|2
(
2τm + αpτe(2h− |u|2)

)
ω.

Since τm > 0 and τe > 0, using Assumption 5.4.1 we can conclude that gi > 0 for all

i = 1, . . . , 4, which implies that the system of inequalities (5.4.17) reduces to condition

(5.4.19). This completes the proof of this theorem since F(αp, ω) = f5(αp, ω) in

(5.4.15).

The proof of the reverse statement of this lemma is straightforward, since (5.4.15)

implies that the inequalities in (5.4.17) are valid, i.e., all minor principals of τ̃ are

positive definite, which is a sufficient condition for the positive definiteness of τ̃ .

�

Remark 5.4.1 Consider the conditions for the positive definiteness of the stabiliza-

tion matrix τ̃ given in Theorem 5.4.3. In (5.4.16), a(αp) = 0 if and only if

αp =
2τm

(|u|2 − 2h)τe
.

Then, F(αp, ω) is independent of αp and ω and can be written as

F(αp, ω) =
ρ|u|2

(
2h− |u|2

)2
τmτe

4τe(h− |u|2)2 − |u|2 (|u|2τe + 4τmT )
.

The class of stabilization matrices for the entropy variables obtained in Theorem 5.4.2

is dimensionally consistent and positive definite under the conditions of Theorem

5.4.3. Let us specify the coefficients τc, τm and τe as in Definition 4.4.1. The next

lemma provides sufficient conditions such that the stabilization matrix τ̃ satisfies the

requirements of Theorem 5.4.3.

Lemma 5.4.1 Under the condition stated in Assumption 5.4.1, using the definition

of τc, τm and τe, given in Definition 4.4.1, the condition

τc > F(αp, ω), (5.4.21)

with F given in Theorem 5.4.3, is equivalent to

f(αp, ω) =
a(αp) ω

2 + b(αp) ω + c(αp)

g(αp)
< 0, (5.4.22)

where

a(αp) =
(
2cv + αp(2h− |u|2)

)2

b(αp) = 2
(
2cv + αp(2h− |u|2)

) (
cv + αp(2h− |u|2αpT )

)

c(αp) = −4cv(cv + αp|u|2) +
(
4Tcv|u|2 + (2h− |u|2)2

)
α2

p

g(αp) = 4cv(cv + |u|2αp(1 − αpT )) .
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Moreover, there exists an interval (α∗
p, 1/T ] of values of αp, with α∗

p ≤ 0, such that

∀αp ∈ (α∗
p, 1/T ] there is a non-empty interval for ω called I

αp
ω , such that (5.4.22) is

satisfied ∀ω ∈ I
αp
ω .

Proof:

Inserting the definition of the stability parameters τc, τm and τe, given in Definition

4.4.1 into (5.4.21), it is straightforward to obtain inequality (5.4.22). Furthermore,

the denominator g(αp) of f(αp, ω) in (5.4.22) is vanishing if and only if

αp = αp,m
p =

|u| ±
√

|u|2 + 4cvT

2|u|T .

Since αp
p > 1/T and αm

p < 0, it follows that f(αp, ω) is well defined for all αp ≤ 1/T,

except αp 6= αm
p . We consider three distinct cases.

Case 1. Assume that
a(αp)

g(αp)
> 0.

This case is only possible when g(αp) > 0, that is when αp ∈ (αm
p , 1/T ]. The second

statement of this lemma is now proven in two steps.

Step 1. First we give necessary and sufficient conditions for which inequality (5.4.22)

is satisfied in a range ω ∈ I
αp
ω 6= ∅, for any αm

p < αp ≤ 1/T. Let us fix αm
p < αp ≤ 1/T

and consider f(αp, ω) in (5.4.22) only as a function of ω. Our aim is to obtain for any

fixed αm
p < αp ≤ 1/T an interval I

αp
ω 6= ∅ such that f(αp, ω) < 0. Since f(αp, ω) is a

second order polynomial in ω with the coefficient a(αp) > 0, it follows that

∂f(αp, ω)

∂ω
=

2a(αp) ω + b(αp)

g(αp)
= 0 ⇐⇒ ω = ωmin = − b(αp)

2a(αp)
.

A necessary and sufficient condition for I
αp
ω 6= ∅ is that

f(αp, ωmin) =
|u|2Tα2

p + (|u|2 − 4h)αp − 5cv

4cv
< 0. (5.4.23)

Step 2. Next, let us vary αp, in (5.4.23) and verify for what range of αp the inequality

is satisfied. We have now f(αp, ωmin) a second order polynomial in αp and

∂f(αp, ωmin)

∂αp
=

2|u|2Tαp + |u|2 − 4h

4cv
= 0 ⇐⇒ αp = αpmin =

−|u|2 + 4h

2|u|2T .

Since

f(αpmin, ωmin) = − (−|u|2 + 4h)2 + 20cv|u|2T
16cv|u|2T

< 0,

there is an interval (α−
p , α

+
p ), with

α±
p =

−|u|2 + 4h±
√

(−|u|2 + 4h)2 + 20cv|u|2T
2|u|2T ,
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Figure 5.2: Illustration of f(αp, ωmin) as a function of αp.

such that f(αp, ωmin) < 0 for all αp ∈ (α−
p , α

+
p ). Since we need to satisfy the assump-

tion αm
p < αp ≤ 1/T, we have to further investigate the interval we have just found to

satisfy (5.4.23). In Lemma 5.4.2 we prove that for sufficiently small αp the following

is valid

αpmin >
1

T
. (5.4.24)

It is straightforward to see that α−
p < 0 and using (5.4.24), we have

1

T
< αpmin < α+

p ,

as illustrated in Figure 5.2. Consequently, we proved that

f(αp, ωmin) < 0, ∀αp ∈ (α−
p , 1/T ].

Moreover,

f(αp, ωmin) < 0, ∀αp ∈ (α∗
p, 1/T ],

where α∗
p = max{α−

p , α
m
p } < 0. Hence, we obtained the following result

∃ Iαp
ω 6= ∅ such that f(αp, ω) < 0, ∀ω ∈ Iαp

ω and ∀αp ∈ (α∗
p, 1/T ].

In Figure 5.3 we illustrated the function f(αp, ω) as a function of ω for given values

of αp, as marked on the plot.

Case 2. Assume that
a(αp)

g(αp)
< 0.
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Figure 5.3: Illustration of f(αp, ω) as a function of ω for given values of αp.

This case is only possible when g(αp) < 0. Since αp
p > 1/T, this condition is satisfied

for αp ∈ (−∞, αm
p ). This case is not interesting for us since it does not contain the

incompressible limit, that is αp = 0.

Case 3. Consider the case when a(αp) = 0, which is equivalent to

αp = α0
p =

2cv
|u|2 − 2h

. (5.4.25)

In the next lemma we will show that for weakly compressible flows α0
p > 1/T, there-

fore, this case we can omit from our analysis. �

Lemma 5.4.2 For weakly compressible flows, or equivalently, for sufficiently small

Eckert number, the followings hold

αpmin >
1

T
, (5.4.26)

α0
p >

1

T
, (5.4.27)

where αpmin is the minimum of the function f(αp, ωmin) in (5.4.23) and α0
p is defined

in (5.4.25).

Proof:

Inserting the value of αpmin into (5.4.26) we obtain

|u|2
h

<
4

3
. (5.4.28)
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The left hand side of this inequality is a dimensionless quantity and it is related to

the reference values {ρr, |u|r, L,∆T} introduced in Section 3.5 in the following way:

|u∗|2
h∗

|u|2r
cpr∆T

=
|u∗|2
h∗

Ec <
4

3
,

where the dimensionless variables are denoted by a star, cpr and the reference tem-

perature difference ∆T = Tw − T∞ are also defined in Section 3.5. For compressible

flows, there is a close relation between the Mach number M and the Eckert number,

that is

Ec = (γ − 1)M2 T∞
∆T

.

In the context of the compressibility constraints discussed in this thesis, the Eckert

number can be expressed as

Ec = (γ − 1)ρr |u|2r βT
T∞
∆T

. (5.4.29)

In the incompressible limit, βT → 0, the Eckert number is also decreasing, therefore,

for weakly compressible flows (5.4.28) is satisfied.

Next we will show (5.4.27) indirectly. Assume that α0
p < 1/T, which is leads to

2 <
|u|2

cvT + h
<

|u|2
h

=
|u∗|2
h∗

Ec. (5.4.30)

Using the weakly compressible assumption and (5.4.29), the right hand side of (5.4.30)

is decreasing as βT → 0, therefore, the inequality (5.4.30) will not hold, which leads

to a contradiction. �

Remark 5.4.2 Let us recall that in Lemma 4.4.1 of Chapter 4, we obtained that for

αp = 0

f(0, ω) < 0 if and only if ω ∈ I0
ω =

(

−1 −
√

5

2
,
−1 +

√
5

2

)

.

Since f in (5.4.22) is a second order polynomial in ω, we can write it as

f(αp, ω) =

(
2cv + αp(2h− |u|2)

)2

4cv(cv + |u|2αp(1 − αpT ))
(ω − ω+(αp))(ω − ω−(αp))

where ω+ and ω− are the roots of this polynomial. When αp is sufficiently small, we

can write the following expansion of the roots

ω±(αp) =
−1 ±

√
5

2
±

√
5

20cv

(

(9 ∓
√

5)|u|2 − (6 ± 2
√

5)h
)

αp +O(α2
p). (5.4.31)
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5.5 Entropy stability

In this section we will show that the Galerkin least-squares finite element formulation

of the compressible Navier-Stokes equations satisfies a global entropy stability. We

will demonstrate that a necessary and sufficient condition for stability is the positive

definiteness of the stabilization matrix τ̃ . In the previous section we constructed a class

of stabilization operators and gave necessary and sufficient conditions for positive

definiteness but restricted ourself only to weakly compressible flows. The stability

analysis described in this section is, however, valid for general compressible flows if τ̃

is positive definite.

Consider the compressible Navier-Stokes equations in conservative form

U,t + F a
i,i = F d

i,i , for i = 1, 2, 3, (5.5.1)

where U ∈ R5 is the vector of conservative variables, and F a
i , F

d
i ∈ R5 are, respec-

tively, the advective and diffusive fluxes in the ith Cartesian coordinate direction,

which are defined in (3.1.8). As discussed in Section 3.3.1, we need to complete

(5.5.1) with the equations of state which we choose to be for an ideal gas

e = cvT and p = (γ − 1)ρe, (5.5.2)

where γ = cp/cv. For smooth solutions, we can write the system (5.5.1) in the form

U,t +Ai(U)U,i = (Kij(U)U,j),i, (5.5.3)

where Ai(U) = Fi,U and Kij(U)U,j = F d
i . The flux Jacobian matrices for conservative

variables are given for instance in [23].

5.5.1 The entropy function

In this section we recall the concept of an entropy function, the properties of entropy

variables and some important theorems relating these two concepts.

The following definition shows the important link between hyperbolic systems and

the concept of entropy.

Definition 5.5.1 A scalar valued function H = H(U) is called generalized entropy

function for the system

U,t +Ai(U)U,i = 0 (5.5.4)

if the following two conditions are satisfied:

(1) H is a convex function.
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(2) There exists scalar-valued functions σi = σi(U), i = 1, 2, 3, called entropy fluxes

such that

H,UAi(U) = σi,U (U). (5.5.5)

The following theorems, show the relationship between symmetric hyperbolic systems

and generalized entropy functions.

Theorem 5.5.1 (Godunov, [21], [30]) If a hyperbolic system can be symmetrized by

introducing a change of variables, then a generalized entropy function and correspond-

ing entropy fluxes exist for this system.

Theorem 5.5.2 (Mock, [21], [30]) A hyperbolic system of conservation laws possess-

ing a generalized entropy function H, becomes symmetric hyperbolic under the change

of variables

V T =
∂H

∂U
. (5.5.6)

For the proof of the above theorems we refer to [21].

Theorem 5.5.3 (Harten, [21],[30]) A family of generalized entropy functions for the

Euler equations (5.5.4) is given by

H(U) = −ρg(s) such that g′ > 0,
g′′

g′
<

1

γ
, (5.5.7)

where s is the thermodynamic entropy.

Note that the last inequality in (5.5.7) ensures satisfaction of the convexity condition.

The convexity of H is equivalent to the positive-definiteness of Ã0, which can be seen

from the relation
∂2H

∂U2
=
∂V

∂U
= Ã−1

0 .

The corresponding entropy fluxes are given by

σi = uiH(U), i = 1, 2, 3, where u = (u1, u2, u3)
T . (5.5.8)

Given a general equation of state, or equivalently, the fundamental equation s, then

using the entropy function H in (5.5.7) a new set of variables can be obtained by

(5.5.6). As an example, consider the entropy function H in (5.5.7) in combination

with the ideal gas equations of state, or equivalently, the fundamental equation for

the entropy s = ln(p/ργ) + s0. Then, a new set of variables is defined by (5.5.6) as

V =










V1

V2

V3

V4

V5










=
g′

e










e(γ − g/g′) − 1
2 |u|2

u1

u2

u3

−1










.

102



5.5. Entropy stability

In [30] it is shown that symmetrization of the Navier-Stokes equations with heat

conduction places additional requirements on the definition of the family of generalized

entropy functions in (5.5.7). Since this is crucial for the stability analysis of the

Navier-Stokes equations, we briefly illustrate this result. Note that in terms of the

symmetrizing variables, the diffusive flux tensor K̃ = (K̃ij), i, j = 1, 2, 3, is symmetric

and positive-semidefinite. The diffusive fluxes F d
i are composed of the viscous fluxes

F v
i and the heat flux F h

i . Since

K̃h
ijV,j = F h

i =










0

0

0

0

κT,i










, i = 1, 2, 3,

the only way the symmetry of K̃ can be maintained is if T depends only on V5. Using

the change of variables

T (V ) = − g′

cvV5
,

this implies that g′ is constant, therefore, g is an affine function of s. The conclusion

is that for the Navier-Stokes equations, g must be an affine function of s.

Next, we give some examples of global entropy functions frequently used in the related

literature.

Remark 5.5.1 One simple case, considered in [50] is H = −ρ(s− s0), or the same

function with the additive constant s0 = 0 is discussed in [30]. An other example

given in [3] assumes that H = −ρs/(γ − 1). The symmetrizing variables can then be

obtained using (5.5.6), and the mappings U 7→ V and V 7→ U can be given.

In the following lemma we summarize the properties of the entropy variables V, defined

in Theorem 5.5.2.

Lemma 5.5.1 Defining H = −ρg(s) where g is an affine function of s, the following

identities are valid

V · U,t = H,t

V · Fi,i(U) = (uiH),i

V · F d
i =

qi
cvT

.

Proof:

These results follow directly from the definition of entropy variables and fluxes. In

the last identity we used

V TF v
i = 0, V TF h

i =
qi
cvT

. (5.5.9)
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�

Remark 5.5.2 Given the entropy function H = −ρg(s), where g is an affine function

of s, the present definition of the entropy variables enables us to derive the following

important result

0 = V T
(

Ã0V,t + ÃiV,i − (K̃ijV,j),i

)

= H,t + (uiH),i + V T
,i K̃ijV,j − (V T K̃ijV,j),i

= −(ρs),t − (ρsui),i + V T
,i K̃ijV,j −

(
qi
cvT

)

,i

, (5.5.10)

where we used the identities of Lemma 5.5.1.

Remark 5.5.3 Equation (5.5.10) implies the entropy production inequality:

(ρs),t + (ρsui),i +

(
qi
cvT

)

,i

= V T
,i K̃ijV,j ≥ 0. (5.5.11)

The entropy production inequality (5.5.11) is of great importance in the finite element

discretization of the Navier-Stokes equations, as we will see later in this section.

Remark 5.5.4 Consider the variational formulation:

Find V ∈ SV , such that for all W ∈ WV , the following is valid

0 =

∫

E
W T

(

Ã0V,t + ÃiV,i − (K̃ijV,j),i

)

dE . (5.5.12)

Setting W = V, and using (5.5.11) we obtain that the discrete solution always satisfies

the Clausius-Duhem inequality:

∫

E

(

(ρs),t + (ρsui),i +

(
qi
cvT

)

,i

)

dE =

∫

E
V T

,i K̃ijV,jdE ≥ 0. (5.5.13)

It is well known that the Galerkin method without stabilization operator is not effec-

tive for non-smooth solutions and produces spurious solutions when the mesh under

resolves the solution, in particular around discontinuities. We will discuss, therefore,

the nonlinear stability of the Galerkin least-squares method in the next section in

which the property (5.5.11) is a crucial component.

104



5.5. Entropy stability

5.5.2 Nonlinear stability analysis

Recall the Galerkin least-squares variational formulation of the symmetrized com-

pressible Navier-Stokes equations. Consider the trial and test function spaces de-

fined in Section 5.1. For our nonlinear stability analysis, we use the following non-

integrated-by-parts form of the weak formulation:

Find a V ∈ Sn
V such that for all W ∈ Wn

V , the following relation is satisfied

N∑

n=0

{BGal(V,W ) +Bls(V,W ) +Bjump(V,W )} = 0, (5.5.14)

where the first term in (5.5.14) is the Galerkin term,

BGal(V,W ) =

∫

En

W ·
[
U(V ),0 + F a

i (U(V )),i − F d
i (U(V )),i

]
dE for i = 1, 2, 3,

the second term is the least-squares stabilization operator, defined as:

Bls(V,W ) =

(nel)n∑

e=1

∫

Ee
n

(LV W ) · τ̃ (LV V )dE ,

with LV the symmetrized Navier-Stokes operator:

LV = Ã`
∂

∂x`
− ∂

∂xi
(K̃ij

∂

∂xj
) for ` = 0, . . . , 3, i, j = 1, 2, 3

and the last term in (5.5.14) is the so-called jump term, defined as:

Bjump(V,W ) =

∫

Ω(tn)

W (t+n ) ·
[
(U(V (t+n )) − U(V (t−n ))

]
dΩ

First, we need to state the following lemma, which was also used in [3].

Lemma 5.5.2 (Time-discontinuous entropy production) The following entropy func-

tion jump identity holds across time slab boundaries

∫

Ω(tn)

(

[H ]
t+n
t−n

− V T (t+n ) [U ]
t+n
t−n

)

dΩ +
∣
∣
∣

∣
∣
∣

∣
∣
∣[U ]

t+n
t−n

∣
∣
∣

∣
∣
∣

∣
∣
∣

2

Ã−1
0 ,Ω(tn)

= 0 (5.5.15)

where

∣
∣
∣

∣
∣
∣

∣
∣
∣[U ]

t+n
t−n

∣
∣
∣

∣
∣
∣

∣
∣
∣

2

Ã−1
0 ,Ω(tn)

=

∫

Ω(tn)

∫ 1

0

(1 − θ)[U ]
t+n
t−n

· Ã−1
0 (Ū(θ)) [U ]

t+n
t−n

dθ dΩ (5.5.16)

and Ū(θ) = U(t+n ) − θ [U ]
t+n
t−n
, with [U ]

t+n
t−n

= U(t+n ) − U(t−n ).
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Proof:

First note that the definition of the norm in (5.5.16) is valid since Ã−1
0 is symmetric

positive definite. Let us recall the Taylor formula for a function f with integral

remainder. Assume that the function f(z) ∈ C2 in some interval (a1, b1). Then for

each a and z ∈ (a1, b1) the following formula is true

f(z) = f(a) + f ′(a)(z − a) +

∫ z

a

(z − v)f ′′(v) d v. (5.5.17)

Applying the Taylor formula for the scalar-value function f = H(U) with

z = U(t−n ), a = U(t+n ),

we obtain

H(U(t−n )) = H(U(t+n )) − ∂H

∂U
(U(t+n ))[U ]

t+n
t−n

+

∫ U(t−n )

U(t+n )

(
U(t−n ) − v

)
· ∂

2H

∂U2
(v) d v.

(5.5.18)

Introducing the variable change v = U(t+n ) − θ[U ]
t+n
t−n

and the identities ∂H
∂U = V T ,

∂2H
∂U2 = Ã−1

0 into (5.5.18) and then integrate over Ω(tn), we obtain (5.5.15). �

Theorem 5.5.4 A global entropy stability of the Galerkin least-squares method for

compressible flows in a time dependent flow domain is ensured with the use of entropy

variables and the stabilization operator τ̃ given in Theorem 5.4.2. The energy balance

in given by

∫

Ω(t−
N+1)

H(t−N+1)dΩ +

N∑

n=0



‖[U ]
t+n
t−n
‖2

Ã−1
0 ,Ω(tn)

+

(nel)n∑

e=1

‖LV V ‖2
τ̃ ,En

+ ‖∇x̄V ‖2
K̃,En





=

∫

Ω(t−0 )

H(t−0 )dΩ +

N∑

n=0

(∫

Qn

(

−uiH(U) +
qi
cvT

)

n̄i dQ +

∫

Qn

n̄ · v H(U(V ))dQ
)

(5.5.19)

Proof:

In order to construct the energy balance, set W = V in (5.5.14). Consider first the

advection part of the Galerkin term. Using the definition of the generalized entropy

function and then applying Gauss theorem, we obtain
∫

En

V · [U(V ),0 + F a
i (U(V )),i] dE =

∫

En

H,U · [U(V ),0 + F a
i (U(V )),i] dE =

∫

En

(H,0 + σi(U(V )),i)dE =

∫

∂En

n` F` d(∂E),

where n ∈ R4 is the unit outward space-time normal vector at the boundary ∂En and

F = (H, σ1, σ2, σ3)
T .
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Next, we split the boundary integral into integrals over the different types of bound-

aries. The normal vectors at Ω(t−n+1) and Ω(t+n ) are (1, 0, 0, 0)T and (−1, 0, 0, 0)T ,

respectively. Hence, the boundary integral over the surfaces Ω(t−n+1) and Ω(t+n ) is

equal to
∫

Ω(tn+1)∪Ω(tn)

n · F dΩ =

∫

Ω(tn+1)

H(t−n+1)dΩ −
∫

Ω(tn)

H(t+n )dΩ.

By adding the jump term to the above integral and sum over all space-time slabs, we

obtain

T1 =

N∑

n=0

{
∫

Ω(tn+1)

H(t−n+1)dΩ −
∫

Ω(tn)

H(t−n )dΩ −
∫

Ω(tn)

(

[H ]
t+n
t−n

− V T (t+n )[U ]
t+n
t−n

)

dΩ

}

=

∫

Ω(tN+1)

H(t−N+1)dΩ −
∫

Ω(t0)

H(t−0 )dΩ +
N∑

n=0

∣
∣
∣

∣
∣
∣

∣
∣
∣[U ]

t+n
t−n

∣
∣
∣

∣
∣
∣

∣
∣
∣

2

Ã−1
0 ,Ω(tn)

where in the last equality we used Lemma 5.5.2.

For the remaining parts of the boundary, let n̄i(x̄, t) ∈ R3, 1 ≤ i ≤ 6, (since we use

hexahedral elements), be the spatial component of the normal vector at the boundary

Qn. The space-time normal vector ni, (1 ≤ i ≤ 6) at the boundary Qn is equal to

ni = (−v · n̄i, n̄i)T ,

with the grid velocity v ∈ R3 given by the relation ∆x̄/∆t. Therefore, the boundary

integral over the boundary Qn is equal to

T2 =

∫

Qn

n · FdQ =

∫

Qn

[n̄iσi(U(V )) − n̄ · v H(U(V ))] dQ

=

∫

Qn

[uiH(U)n̄i − n̄ · v H(U(V ))] dQ, i = 1, 2, 3,

where we used that σi = uiH(U).

Using the relation F d
i (U(V )) = K̃ij(V )V,j , the diffusive part of the Galerkin term can

be written as

T3 =

∫

En

V · F d
i (U(V )),i dE =

∫

En

V · (K̃ij(V )V,j),i dE

=

∫

En

[(

V T K̃ij(V )V,j

)

,i
− V T

,i K̃ijV,j

]

dE

=

∫

Qn

(

V T K̃ij(V )V,j

)

n̄i dQ−
∫

En

V T
,i K̃ijV,j dE

=

∫

Qn

V TF d
i n̄i dQ−

∫

En

V T
,i K̃ijV,j dE

=

∫

Qn

qi
cvT

n̄i dQ− ‖∇x̄V ‖2
K̃,En
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where in the last equality we used (5.5.9), K̃ = (K̃ij) and the operator ∇x̄ is the

gradient operator with respect to the physical space coordinates. Note that since K̃

is symmetric positive-semidefinite, the second term in the last equality above is only

a semi-norm.

Using the positive definiteness of the stabilization matrix τ̃ , we obtain the following

norm for the least-squares operator

T4 =

(nel)n∑

e=1

∫

Ee
n

(LV V ) · τ̃(LV V )dE = ‖LV V ‖2
τ̃ ,Ee

n
.

Finally, adding T2, T3, T4 and summing over all space-time slabs, together with T1

completes the proof of this theorem. �

Remark 5.5.5 The above stability result shows that the global entropy of the system

at the final time is bounded by the initial entropy state provided that the boundary

entropy produced via the boundary integrals on the right hand side of (5.5.19) is nega-

tive. This condition can be used to derive a set of well-posed boundary conditions, and

in [12], Dutt determined boundary conditions which lead to energy decaying systems.

Remark 5.5.6 Furthermore, (5.5.19) also shows that the individual terms, that is

the jump term, the least-squares operator and the gradient of the entropy function are

bounded.
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Chapter 6

Galerkin least-squares finite

element formulation

In this chapter we define the finite element variational method for the solution of

the incompressible Navier-Stokes equations. The basis of our formulation is a time-

discontinuous Galerkin least-squares method. This method is well suited to deal

with time dependent flow domains with moving boundaries and dynamic meshes.

The time-discontinuous Galerkin method results in an implicit discretization using

space-time elements which automatically is globally conservative on deforming meshes

and prevents the inaccuracies of data interpolation between the various meshes, see

for instance Masud and Hughes [40] and van der Vegt and van der Ven [55]. We

discuss this approach for the symmetrized Navier-Stokes equations, but we did not

yet implement all aspects of the mesh deformation discussed in this thesis in the

corresponding computer program.

Consider the incompressible Navier-Stokes equations and the heat equation in a time-

dependent flow domain Ω(t). Since the flow domain boundary is moving and deforming

in time, we will not make a separation between the space and time variables and

consider directly the space Rd+1, where d is the number of space dimensions. Assume

that d = 3. Let E ⊂ R4 be an open, bounded space-time domain. A point x ∈ R4 has

coordinates (x0, x1, x2, x3), with x0 = t representing time, but we will also use the

notation (t, x̄) ∈ R4, with x̄ = (x1, x2, x3) ∈ R3 the position vector at time t. The flow

domain Ω(t) ⊂ E at time t is defined as: Ω(t) = {(x1, x2, x3) ∈ R3 | (t, x1, x2, x3) ∈ E}.
The space-time domain boundary ∂E consists of the hypersurfaces Ω(t0) = {x ∈ ∂E |
x0 = t0}, Ω(tN+1) = {x ∈ ∂E | x0 = tN+1}, and Q = {x ∈ ∂E | t0 < x0 < tN+1}.

Let Y : E 7→ R5 denote the vector of primitive variables (p, u1, u2, u3, T )T and F :

R5 7→ R5×4 denote the flux tensor, with the flux vector in the `th coordinate direction
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Chapter 6. Galerkin least-squares finite element formulation

F` (` = 0, . . . , 3) given by the columns of F , i.e.,

F =










ρ ρu1 ρu2 ρu3

ρu1 ρu2
1 + p ρu1u2 ρu1u3

ρu2 ρu1u2 ρu2
2 + p ρu2u3

ρu3 ρu1u3 ρu2u3 ρu2
3 + p

ρT ρu1T ρu2T ρu3T










,

where ρ denotes the density, ui the velocity component in the ith Cartesian coor-

dinate direction, p the pressure and T the temperature. Using these notations, the

incompressible Navier-Stokes equations can be written in conservative form as

F`(Y (x)),` + (Kij(Y )Y,j),i = 0, x ∈ E ,

where Kij ∈ R5×5 for i, j = 1, 2, 3 denote the viscous flux Jacobian matrices and the

summation convention is used on repeated indices.

6.1 Geometry of space-time elements

Consider the partition of the time interval I = (t0, tN+1) using the time levels t0 <

t1 < . . . < tN+1 and denote by In = (tn, tn+1) the nth time interval. A space-time

slab is defined as En = E ∩ In. In each space-time slab En we define a partition T n
h

into (nel)n non-overlapping hexahedral elements Ee
n. The space-time elements Ee

n are

obtained by splitting the spatial domain Ω(tn) into a set of non-overlapping elements

Ωe
n and connecting them with the mapping ϕn

t to the elements Ωe
n+1 ⊂ Ω(tn+1) at time

tn+1. At each time level tn we use hexahedral elements to define the triangulation.

The evolution of the flow domain during the time interval In is represented by the

mapping:

ϕn
t : Ω(tn) → Ω(t)

x̄ 7→ ϕn
t (x̄), t ∈ In.

The mapping ϕn
t is assumed to be sufficiently smooth, orientation preserving and

invertible. Each element Ωe
n is related to the master element Ω̂ = [0, 1]3 through the

mapping:

F e
n : Ω̂ → Ωe

n

ξ̄ 7→ x̄ =
8∑

i=1

xi(Ω
e
n)χi(ξ̄)

where xi(Ω
e
n) ∈ R3, 1 ≤ i ≤ 8, are the spatial coordinates of the vertices of the

hexahedron Ωe
n and χi(ξ̄) the tri-linear finite element shape functions for hexahedra,
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with ξ̄ = (ξ1, ξ2, ξ3) ∈ Ω̂. The elements Ωe
n+1 are obtained by moving the vertices of

each hexahedron Ωe
n with the mapping ϕn

t to their new position at time t = tn+1.

Therefore, we can define the mapping:

F e
n+1 : Ω̂ → Ωe

n+1

ξ̄ 7→ x̄ =

8∑

i=1

ϕn
tn+1

(xi(Ω
e
n))χi(ξ̄).

The space-time elements are now obtained by connecting the elements in Ω(tn) and

Ω(tn+1) by linear interpolation in time. This results in the following parametrization

of the space-time elements Ee
n :

Ge
n : Ê → Ee

n

ξ 7→ (t, x̄) = x (6.1.1)

with

t(ξ) = (1 − ξ0)tn + ξ0tn+1 (6.1.2)

x̄(ξ) = (1 − ξ0)F
e
n(ξ̄) + ξ0F

e
n+1(ξ̄) (6.1.3)

with ξ ∈ Ê the computational coordinates in the master element Ê = [0, 1]4. Since the

functions t(ξ) and x̄(ξ) are continuously differentiable with respect to ξ, we obtain





dt

dx̄



 =








∂t(ξ)

∂ξ0

∂t(ξ)

∂ξ̄

∂x̄(ξ)

∂ξ0

∂x̄(ξ)

∂ξ̄












dξ0

dξ̄





F e
n

eG n
[0,1]

2

(b)

e
n+1

e

n
e

(c)

Ω

Ω

0

ξ1

n

n ∆t

x∆

0
τ

ε In

t

x

e
n

Ω

( t   )Ω n

( t     )n+1

ε ε
ξ

(a)

Q
n

Q
n
e

Figure 6.1: Illustration of the geometry of two-dimensional space-time elements in

both computational and physical space
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Chapter 6. Galerkin least-squares finite element formulation

where the above (d+1)× (d+1) matrix is the Jacobian matrix of the transformation

(6.1.1) and we denote it by JE . Define the matrix

Jx̄ =







∂x1

∂ξ1
. . . ∂x1

∂ξd

...
. . .

...
∂xd

∂ξ1
. . . ∂xd

∂ξd






. (6.1.4)

Using (6.1.2-6.1.3), we obtain the relations

∂x0

∂ξ0
= tn+1 − tn = ∆t, and

∂x0

∂ξi
=
∂t(ξ)

∂ξi
= 0, i = 1, . . . , d, (6.1.5)

thus JE can be written as

JE =











∂x0

∂ξ0
. . . ∂x0

∂ξd

∂x1

∂ξ0
. . . ∂x1

∂ξd

...
. . .

...

∂xd

∂ξ0
. . . ∂xd

∂ξd











=







∆t 0T

F e
n+1(ξ̄) − F e

n(ξ̄) (1 − ξ0)
∂F e

n(ξ̄)

∂ξ̄
+ ξ0

∂F e
n+1(ξ̄)

∂ξ̄







with the determinant given by

|JE | = ∆t|Jx̄| = ∆t det

(

(1 − ξ0)
∂F e

n(ξ̄)

∂ξ̄
+ ξ0

∂F e
n+1(ξ̄)

∂ξ̄

)

.

The inverse of the matrix JE has the form

I := J−1
E =











∂ξ0

∂x0

∂ξ0

∂x1
. . . ∂ξ0

∂xd

∂ξ1

∂x0

∂ξ1

∂x1
. . . ∂ξ1

∂xd

...
. . .

. . .
...

∂ξd

∂x0

∂ξd

∂x1
. . . ∂ξd

∂xd











=











1
∆t 0 . . . 0

∂ξ1

∂x0

∂ξ1

∂x1
. . . ∂ξ1

∂xd

...
. . .

. . .
...

∂ξd

∂x0

∂ξd

∂x1
. . . ∂ξd

∂xd











.

We define the spatial and time submatrices of J−1
E as

Ī :=











∂ξ0

∂x1
. . . ∂ξ0

∂xd

∂ξ1

∂x1
. . . ∂ξ1

∂xd

...
. . .

...

∂ξd

∂x1
. . . ∂ξd

∂xd











=











0 . . . 0

∂ξ1

∂x1
. . . ∂ξ1

∂xd

...
. . .

...

∂ξd

∂x1
. . . ∂ξd

∂xd











, It :=










∂ξ0

∂x0

∂ξ1

∂x0

. . .

∂ξd

∂x0










=










1
∆t

∂ξ1

∂x0

. . .

∂ξd

∂x0










(6.1.6)

and

Ix̄ := J−1
x̄ =








∂ξ1

∂x1
. . . ∂ξ1

∂xd

...
. . .

...

∂ξd

∂x1
. . . ∂ξd

∂xd







, Īt :=








∂ξ1

∂x0

. . .

∂ξd

∂x0








(6.1.7)

112



6.2. Weak formulation of the incompressible Navier-Stokes equations

respectively. We will frequently use the notations

Ω(t+n ) = lim
ε→0

Ωe(tn + ε), Ω(t−n+1) = lim
ε→0

Ωe(tn+1 − ε)

to indicate that the mesh can change discontinuously at the time levels tn and

tn+1. Each space-time slab En is bounded by the hypersurfaces Ω(t+n ), Ω(t−n+1) and

Qn = ∂En \ (Ω(t+n ) ∪ Ω(t−n+1)). Similarly, each space-time element is bounded by the

hypersurfaces Ωe(t+n ), Ωe(t−n+1) and Qe
n = ∂Ee

n \ (Ωe(t+n ) ∪ Ωe(t−n+1)).

6.2 Weak formulation of the incompressible Navier-

Stokes equations

The time-discontinuous Galerkin method lacks stability. To improve the stability

while maintaining accuracy, we add a least-squares operator to the basic Galerkin

formulation.

The trial function space in each space-time slab En is denoted by V n
h and the test func-

tion space by W n
h . Their elements are assumed to be C0 continuous within each space-

time slab, but discontinuous across the interfaces of the space-time slabs, namely at

times t1, t2, . . . , tN−1. The finite element spaces are now defined as:

V n
h =

{
V ∈ H1(En)5 : V |Ee

n
◦Ge

n ∈
(

P̂1(0, 1) ⊗ P̂k(Ω̂)
)5

, ∀ Ee
n ∈ T n

h ,

q1(V ) = q̄1 on Qn

}

Wn
h =

{
W ∈ H1(En)5 : W |Ee

n
◦Ge

n ∈
(

P̂1(0, 1) ⊗ P̂k(Ω̂)
)5

, ∀ Ee
n ∈ T n

h ,

q2(W ) = q̄2 on Qn

}
,

where Ge
n denotes the mapping from the space-time reference element (0, 1)× Ω̂, with

Ω̂ the hexahedral reference element in R3, to the element in physical space Ee
n, and

P̂k represent kth-order polynomials. Further, V1,W1 denote the first component of

V,W ∈ R5, respectively, q1 : E5 → R4 are the (nonlinear) boundary conditions for

the components V2, V3, V4, and V5 of V , with a similar expression for q2 : E5 → R4,

and q̄1, q̄2 ∈ R4 are the prescribed boundary conditions. Note, not necessarily all

components of V will have imposed boundary conditions, this depends on the type of

boundary condition. When the finite element spaces are defined on the whole space

time domain then the superscript n is omitted.

Let us recall the Galerkin least-squares variational formulation of the incompressible

Navier-Stokes equations in terms of entropy variables:
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Chapter 6. Galerkin least-squares finite element formulation

Find a V ∈ Vh, such that for all W ∈ Wh, the following relation is satisfied

N∑

n=0

{BGal(V,W ) +BLS(V,W ) +Bjump(V,W )} = 0, (6.2.1)

where the first term in (6.2.1) is the Galerkin term,

BGal(V,W ) =

∫

En

W ·
(

F`(V ),` − (K̃ijV,j),i

)

dE for ` = 0, . . . , 3, i, j = 1, 2, 3,

the second term is the least-squares stabilization operator, defined as:

BLS(V,W ) =

(nel)n∑

e=1

∫

Ee
n

(LV W ) · τ̃ (LV V )dE ,

with LV the symmetrized Navier-Stokes operator:

LV = Ã`
∂

∂x`
− ∂

∂xi
(K̃ij

∂

∂xj
) for ` = 0, . . . , 3, i, j = 1, 2, 3,

and the last term in (6.2.1) is the so-called jump term, defined as:

Bjump(V,W ) =

∫

Ω(tn)

W (t+n ) ·
[
F0(V (t+n )) − F0(V (t−n ))

]
dΩ. (6.2.2)

The jump term is added to the weak formulation to ensure weak continuity between

different space-time slabs. The stabilization operator is added in order to prevent

numerical oscillations in regions with strong gradients which are not well represented

on the computational mesh, and to ensure a unique solution satisfying the inf-sup

condition, see for instance [48]. In the least-squares operator, the choice for the τ̃

matrix is crucial, and is examined in detail in Chapter 4 of this thesis. This operator

greatly influences the stability of the numerical scheme. The use of a stabilization

operator avoids the need of using different order elements for pressure and velocity to

meet the inf-sup stability condition, which is a common problem for incompressible

flow.

6.3 Transformation of the space-time weak

formulation into ALE form

In this section we will establish the relation between the Arbitrary Lagrangian Eu-

lerian (ALE) and space-time weak formulation of the incompressible Navier-Stokes

equations.

The weak formulation (6.2.1) can be transformed into an integrated-by-parts form

using Gauss’ theorem. If we introduce

W · F`,`(V ) = (W · F`(V )),` −W,` · F`(V )
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formulation into ALE form

into the weak formulation (6.2.1) and apply Gauss’ theorem, we obtain:

∫

En

(W ·F`(V )),` dE =

∫

∂En

n·(W TF(V )) d (∂E) =

∫

∂En

n`(W
TF`(V )) d (∂E) (6.3.1)

where n ∈ R4 is the unit outward space-time normal vector at the domain boundary

∂En. The ALE form can now be obtained by calculating the space-time normal vector

n.

Given the parametrization (t, x̄) = Ge
n(ξ) for the space-time element, the space-time

normal vector ne at the boundary surface is orthogonal to the tangential vectors τj ,

j = 0, . . . , 3. The tangential vectors are defined as τj =
∂Ge

n

∂ξj
, and are equal to:

τ0 =

(

tn+1 − tn

F e
n+1(ξ̄) − F e

n(ξ̄)

)

=

(
∆t

∆x̄

)

, (6.3.2)

τj =






0

(1 − ξ0)
∂F e

n(ξ̄)

∂ξj
+ ξ0

∂F e
n+1(ξ̄)

∂ξj




 , j = 1, 2, 3. (6.3.3)

First we split the boundary integral in (6.3.1) into integrals over different types of

boundaries. The normal vectors at Ω(t−n+1) and Ω(t+n ) are (1, 0, 0, 0)T and (−1, 0, 0, 0)T ,

respectively. Hence, the boundary integral over the surfaces Ω(t−n+1) and Ω(t+n ) is

equal to

∫

Ω(tn+1)∪Ω(tn)

n · (W TF(V )) dΩ =

∫

Ω(tn+1)

W (t−n+1)F0(V (t−n+1))dΩ−
∫

Ω(tn)

W (t+n )F0(V (t+n ))dΩ. (6.3.4)

By adding the jump term (6.2.2) to (6.3.4) and sum over all space-time slabs, we

obtain

N∑

n=0

{
∫

Ω(tn+1)∪Ω(tn)

n · (W TF(V )) dΩ +Bjump(V,W )

}

=

N∑

n=0

{
∫

Ω(tn+1)

W (t−n+1)F0(V (t−n+1))dΩ −
∫

Ω(tn)

W (t+n )F0(V (t−n ))dΩ

}

.

For the remaining parts of the boundary, let n̄i(x̄, t) ∈ R3, 1 ≤ i ≤ 6, be the spatial

component of the normal vector at the boundary Qn. By definition, n̄i for 1 ≤ i ≤ 6,

is perpendicular to the tangential vectors

τ̄j = (1 − ξ0)
∂F e

n(ξ̄)

∂ξj
+ ξ0

∂F e
n+1(ξ̄)

∂ξj
, j = 1, 2, 3.
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Chapter 6. Galerkin least-squares finite element formulation

Hence, the space-time normal vectors ni = (n0, n̄
i), 1 ≤ i ≤ 6, are orthogonal to the

tangential vectors defined in (6.3.2-6.3.3) if and only if the conditions

∆t n0 + ∆x · n̄i = 0

are satisfied. The space-time normal vector ni, (1 ≤ i ≤ 6) at the boundary Qn is

equal to

ni = (−v · n̄i, n̄i)T ,

with the grid velocity v ∈ R3 given by the relation ∆x̄/∆t. Therefore, the boundary

integral over the boundary Qn is equal to
∫

Qn

n · (W TF)dQ =

∫

Qn

(
n̄i(W

TFi(V )) − n̄ · v(W TF0(V ))
)
dQ

with i = 1, 2, 3. Finally, summing over all space-time slabs we obtain the weak for-

mulation of the symmetrized Navier-Stokes equations in ALE form for the whole

space-time domain:

Find V ∈ Vh, such that for all W ∈ Wh, the following relation is satisfied:

N∑

n=0

{ ∫

En

(

−W,0 · F0(V ) −W,i · Fi(V ) +W,i · K̃ijV,j

)

dE (6.3.5)

+

∫

Ω(tn+1)

W (t−n+1) · F0(V (t−n+1))dΩ −
∫

Ω(tn)

W (t+n ) · F0(V (t−n ))dΩ (6.3.6)

+

(nel)n∑

e=1

∫

Ee
n

(LV W ) · τ̃(LV V )dE −
∫

Qn

n̄ · v(W · F0(V ))dQ (6.3.7)

+

∫

Qn

W ·
(

Fi(V ) − K̃ijV,j

)

n̄i dQ
}

= 0. (6.3.8)

6.4 Finite element basis functions

In this section we describe the finite element basis functions for vector-valued prob-

lems. In this thesis the shape functions are chosen such that only one component in

the vector is nonzero. This is the case, if we choose the shape functions to be

Ψi = (0, . . . , 0, ψi(x), 0, . . . , 0)T ∈ Rd+2

where Ψi is a vector-valued shape function with the scalar shape function ψi the only

non-zero component. Let us denote by c(i) the index of this non-zero component,

then the lth component of Ψi can also be written as

(Ψi(x))l = ψi(x)δc(i) l, (6.4.1)
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6.4. Finite element basis functions

with the Kronecker delta function δjk . For notational simplicity, we use the scalar

function notation in the remainder and it is straightforward that for vector-valued

basis functions we mean (6.4.1).

In the finite element discretization we use finite element spaces that consist of basis

functions that are piecewise linear in time and higher order polynomials in space.

First, in the master element Ê the basis functions φ̂m : Ê → R, for m = 1, . . . , 2ndof

are defined which are linear in time and have the following form

φ̂m(ξ) = λi(ξ0)ψ̂k(ξ̄) for i = 1, 2, k = 1, . . . , ndof

where λ1(τ) = 1 − τ, λ2(τ) = τ and ndof denotes the number of degrees of freedom

on the reference element Ω̂. The functions ψ̂k : Ω̂ → R are the general Lagrangian

basis functions defined on the d-dimensional cube (d = 2 or 3) as

ψ̂k(āj) = δkj , j = 1, . . . , ndof ,

with ψ̂k polynomials on Ω̂, δkj the Kronecker delta, and āj , j = 1, . . . , ndof the nodes

of the finite element mesh in Ω̂.

Next, the basis functions φe
m : Ee

n → R are constructed through the parametrization

Ge
n as

φe
m = φ̂m ◦Ge

n
−1, m = 1, . . . , 2ndof ,

or φe
m(x) = φ̂m(Ge

n
−1(x)).

Hence, within the nth space-time slab, the finite element trial solution can be defined

as

V h(t, x̄) =

(nnp)(n)
∑

A=1

φA(t, x̄)VA =

(nnp)(n)
∑

A=1

(φA;n+1(t, x̄)vA;n+1 + φA;n(t, x̄)ṽA;n)

=

(nnp)(n)
∑

A=1

φ̂A(Ge
n
−1(x))VA

=

(nnp)(n)
∑

A=1

(

λ2(ξ0)ψ̂A(ξ̄)vA;n+1 + λ1(ξ0)ψ̂A(ξ̄)ṽA;n

)

, (6.4.2)

where vA;n+1 and ṽA;n are the nodal values of V h(t, x̄) at node A and times t−n+1 and

t+n , respectively. The vector of unknowns at time level (n+ 1) is denoted by

vn+1 =
(

vT
1;n+1, v

T
2;n+1, . . . , v

T
nnp;n+1

)T

(6.4.3)

and we will call them primary variables. The vector of unknowns at the nth time

level is

ṽn =
(

ṽT
1;n, ṽ

T
2;n, . . . , ṽ

T
nnp;n

)T

(6.4.4)
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Chapter 6. Galerkin least-squares finite element formulation

and we call them secondary variables. We denote by φA;n+1(x) and φA;n(x) the finite

element shape functions related to the nodes A at the time levels (n + 1) and n,

respectively, and (nnp)n is the number of nodal points for the nth space-time slab.

Then,

φe
A;n+1(x) = λ2(ξ0)ψ̂A(ξ̄), φe

A;n(x) = λ1(ξ0)ψ̂A(ξ̄). (6.4.5)

Due to the definition of the basis functions in physical space, we can write

φA;n+1(t
−
n+1, x̄(ξ)) = ψ̂A(ξ̄), φA;n(t+n , x̄(ξ)) = ψ̂A(ξ̄),

and the trial solution at the time levels t−n+1 and t+n are therefore equal to

V h(t−n+1, x̄) =

(nnp)(n)
∑

A=1

ψ̂A(ξ̄)vA;n+1, V h(t+n , x̄) =

(nnp)(n)
∑

A=1

ψ̂A(ξ̄)ṽA;n.

The test functions on the nth space-time slab are defined as:

W h(t, x̄) =

(nnp)(n)
∑

A=1

φA(x)wA =

(nnp)(n)
∑

A=1

φ̂A(G−1
n (x))wA

and we write them in the form

W h(t, x̄) =

(nnp)(n)
∑

A=1

(

ψ̂A(ξ̄)wA;n+1 + ψ̂A(ξ̄)(λ1(ξ0) − λ2(ξ0))w̃A;n

)

, for (t, x̄) ∈ En

(6.4.6)

where wA;n+1 and w̃A;n are the nodal values of the weighting function corresponding

to vA;n+1 and ṽA;n, respectively. The values of the test functions at the time levels

t−n+1 and t+n are

W h(t−n+1, x̄) =

(nnp)(n)
∑

A=1

{

ψ̂A(ξ̄)wA;n+1 − ψ̂A(ξ̄)w̃A;n

}

,

and

W h(t+n , x̄) =

(nnp)(n)
∑

A=1

{

ψ̂A(ξ̄)wA;n+1 + ψ̂A(ξ̄)w̃A;n

}

,

respectively.

Remark 6.4.1 The motivation for the choice of the test functions given in (6.4.6)

goes back to the extensive work done by Shakib et al. [51]. If we choose the test

function in the same way as the trial functions, we end up with a nonlinear system of

equations where the temporal coupling between the primary and secondary variables

will be non-symmetric. In [50], Shakib showed that an alternative to avoid this problem

is to use a left preconditioning matrix of the form
(

1 1

−1 1

)

.
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We can incorporate this preconditioning directly into the weighting function, which

results in (6.4.6).

If we introduce the relations for V h(x) and W h(x), given by (6.4.2) and (6.4.6), into

the weak formulation (6.3.5-6.3.8), and assume that there are no essential bound-

ary conditions, then the time-discontinuous Galerkin least-squares finite element dis-

cretization results in a system of nonlinear algebraic equations for the coefficients v

and ṽ in every space-time slab:

G(v, ṽ) = 0 (6.4.7)

G̃(v, ṽ) = 0. (6.4.8)

Note, we omitted the subscript n for the vectors v and ṽ since the same applies to

all space-time slabs En. In [50], implicit/explicit predictor multi-corrector algorithms

were developed to reduce the nonlinear system to a sequence of linear systems. The

solution strategy employed will be presented later in Section 6.6. Denote by

R = G(v, ṽ),

R̃ = G̃(v, ṽ),

the primary and secondary residual vectors and by

M11 =
∂G(v, ṽ)

∂v
, M12 =

∂G(v, ṽ)

∂ṽ
,

M21 =
∂G̃(v, ṽ)

∂v
, M22 =

∂G̃(v, ṽ)

∂ṽ

the consistent tangent matrices, respectively. The residual vectors and tangent ma-

trices can be constructed in each space-time slab from their element contribution

as

R =

nel∧

e=1

Re, Re = (Re
a), a = 1, . . . , nen

M11 =

nel∧

e=1

Me
11, Me

11 = (Mab
11 ), a, b = 1, . . . , nen

where nen is the number of element nodes, Re
a is the residual at node a of element Ee

n,

Mab
11 is the entry of the element matrix M e

11 corresponding to the element nodes a and

b and
∧

is the assembly operator. Note, the secondary residual R̃ and the matrices

M12,M21 and M22 are constructed analogously. In the next section we will compute

the entries of the element residual and matrices, respectively.
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Chapter 6. Galerkin least-squares finite element formulation

6.5 Space-time finite element discretization

In this section we discuss the Galerkin least-squares finite element discretization of

the symmetrized incompressible Navier-Stokes equations. The trial and test functions

are chosen as in (6.4.2) and (6.4.6) respectively.

Let V e(x̄) and Ṽ e(x̄) respectively, be the restrictions of V h(t−n+1, x̄) and V h(t+n , x̄) to

the eth element

V e(x̄) := V h(t−n+1, F
e
n+1(ξ̄)),

Ṽ e(x̄) := V h(t+n , F
e
n(ξ̄)),

and let

V̄ e(x̄) =
1

2
(V e(x̄) + Ṽ e(x̄)),

4
V e(x̄) =

1

2
(V e(x̄) − Ṽ e(x̄))

denote the average- and difference-in-time values of the entropy solution in the space-

time slab En.

The basis functions at node a of element Ee
n, φ

e
a(t, x̄) in the physical coordinates are

related to the basis functions in the computational coordinates φ̂a(ξ) as φe
a(x) = φ̂a(ξ),

for a = 1, . . . , nen, where nen is the number of element nodes (e.g. nen = 4 for bilinear

and nen = 9 for biquadratic quadrilaterals). Note here that we used A to denote the

nodes in a space-time slab and a for the nodes of a space-time element. Thus, we

obtain

∂φe
a(t, x̄)

∂x`
=
∂φ̂a(Ge

n
−1(x))

∂x`
=

d∑

j=0

∂ξj
∂x`

∂φ̂a(ξ)

∂ξj
for ` = 0, . . . , d.

The above relation can be written in the following closed form

∇xφ
e
a(t, x̄) = IT∇ξφ̂a(ξ)

where ∇ξ = ( ∂
∂ξ0

, ∂
∂ξ1

, . . . , ∂
∂ξd

)T and ∇x = ( ∂
∂x0

, . . . , ∂
∂xd

)T . Since our solution is

vector valued, we need to generalize the above gradient operators. Denote by ∇ξ

and ∇ξ̄ the local gradient in the element space-time and spatial coordinate systems,

respectively. That is

∇ξ =











∂
∂ξ0

Im

∂
∂ξ1

Im

...

∂
∂ξd

Im











, ∇ξ̄ =











∂
∂ξ1

Im

∂
∂ξ2

Im

...

∂
∂ξd

Im











,
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6.5. Space-time finite element discretization

where Im is the m ×m identity matrix. The gradients with respect to the physical

space coordinates, ∇x and ∇x̄, are defined analogously. Using the definition of the

transformation from the reference to the physical coordinates, discussed in Section

6.1, the spatial gradient operator can be decomposed as

∇x = IT∇ξ =





1
∆t ĪT

t

0 IT
x̄









∂
∂ξ0

∇ξ̄



 =





1
∆t

∂
∂ξ0

+ ĪT
t ∇ξ̄

IT
x̄ ∇ξ̄



 . (6.5.1)

The spatial gradient and time derivative of φe
a(t, x̄) are then related to the gradient

of φ̂a(ξ) as

∇x̄φ
e
a(t, x̄) = ĪT∇ξφ̂a(ξ) = IT

x̄ ∇ξ̄φ̂a(ξ), (6.5.2)

∂φe
a(t, x̄)

∂t
= IT

t ∇ξφ̂a(ξ) =
1

∆t

∂

∂ξ0
φ̂a(ξ) + ĪT

t ∇ξ̄φ̂a(ξ). (6.5.3)

The second equality in (6.5.2) follows from the property of the transformation from

reference to physical coordinates, see (6.1.6). Using (6.4.5), it follows that the time

derivative of the basis functions of node a of an element Ee
n at time levels n+ 1 and

n are related to the basis functions on the master element as

∂φe
a;n+1(t, x̄)

∂t
= IT

t ∇ξ(λ2(ξ0)ψ̂a(ξ̄)) = IT
t

(

ψ̂a(ξ̄), ξ0∇T
ξ̄ ψ̂a(ξ̄)

)T

=
1

∆t
ψ̂a(ξ̄) + ξ0ĪT

t ∇ξ̄ψ̂a(ξ̄),

and

∂φe
a;n(t, x̄)

∂t
= IT

t ∇ξ(λ1(ξ0)ψ̂a(ξ̄)) = IT
t

(

−ψ̂a(ξ̄), (1 − ξ0)∇T
ξ̄ ψ̂a(ξ̄)

)T

= − 1

∆t
ψ̂a(ξ̄) + (1 − ξ0)ĪT

t ∇ξ̄ψ̂a(ξ̄),

respectively.

The time derivative of the trial solution in the element Ee
n can then be given as:

V h
,t (t, x̄) =

2

∆t

4
V e(x̄) +

nen∑

a=1

{

ξ0ĪT
t ∇ξ̄ ψ̂a(ξ̄)va;n+1 + (1 − ξ0)ĪT

t ∇ξ̄ ψ̂a(ξ̄)ṽa;n

}

,

and the time derivative of the test function can be written as:

W h
,t (t, x̄) =

nen∑

a=1

{

ĪT
t ∇ξ̄ψ̂a(ξ̄)wa;n+1 +

(

− 2

∆t
ψ̂a(ξ̄) + (1 − 2ξ0)ĪT

t ∇ξ̄ψ̂a(ξ̄)

)

w̃a;n

}

.

Note here that when the mesh is not deforming in time, ĪT
t = (0, . . . , 0) ∈ Rd,

therefore, on a fixed mesh we have

V h
,t (t, x̄) =

2

∆t

4
V e(x̄) and W h

,t (t, x̄) = − 2

∆t

nen∑

a=1

ψ̂a(ξ̄)w̃a;n.
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Chapter 6. Galerkin least-squares finite element formulation

Using (6.5.2), the space derivatives of the basis functions are given as

∇x̄ψ
e
a;n+1(t, x̄) = ĪT∇ξ

(

λ2(ξ0)ψ̂a(ξ̄)
)

= ĪT
(

ψ̂a(ξ̄), ξ0∇T
ξ̄ ψ̂a(ξ̄)

)T

= ξ0IT
x̄ ∇ξ̄ψ̂a(ξ̄)

∇x̄ψ
e
a;n(t, x̄) = ĪT∇ξ

(

λ1(ξ0)ψ̂a(ξ̄)
)

= ĪT
(

−ψ̂a(ξ̄), (1 − ξ0)∇T
ξ̄ ψ̂a(ξ̄)

)T

= (1 − ξ0)IT
x̄ ∇ξ̄ψ̂a(ξ̄)

The spatial gradient of the trial and test functions is now equal to

∇x̄V
h(t, x̄) =

nen∑

a=1

{

ξ0IT
x̄ ∇ξ̄ψ̂a(ξ̄)va;n+1 + (1 − ξ0)IT

x̄ ∇ξ̄ψ̂a(ξ̄)ṽa;n

}

,

and

∇x̄W
h(t, x̄) =

nen∑

a=1

{

IT
x̄ ∇ξ̄ψ̂a(ξ̄)wa;n+1+

(

−2ψ̂a(ξ̄)∇x̄ξ0 + (λ1(ξ0) − λ2(ξ0))IT
x̄ ∇ξ̄ψ̂a(ξ̄)

)

w̃a;n

}

=

nen∑

a=1

{

IT
x̄ ∇ξ̄ψ̂a(ξ̄)wa;n+1 + (λ1(ξ0) − λ2(ξ0))IT

x̄ ∇ξ̄ψ̂a(ξ̄)w̃a;n

}

.

Note that the last equality follows from the ∇x̄ξ0 = 0 property of the transformation

from the reference to the physical coordinates.

Next, the integrals in the weak formulation (6.3.5-6.3.8) are transformed to the ref-

erence element to facilitate their numerical evaluation.

The convective part of the Galerkin contribution in the weak formulation can

be transformed into an expression on the reference element as:

Be
Galconv

(V h,W h) : = −
∫

Ee
n

W h
,` · F`(V

h)dE = −
∫

Ee
n

∇xW
h · F(V h)dE

= −
∫

Ê

(
1

∆t

∂

∂ξ0
W h + ĪT

t ∇ξ̄W
h

)

· F0(V
h)|JE |dÊ

−
∫

Ê
IT

x̄ ∇ξ̄W
h · Fa(V h)|JE |dÊ

where the convective flux tensor is defined as FaT = (F T
1 , F

T
2 , F

T
3 ) with Fi the flux

in the ith coordinate direction. The test and trial functions in the integral over the
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6.5. Space-time finite element discretization

reference element are equal to W h = W h(t(ξ), x̄(ξ)) and V h = V h(t(ξ), x̄(ξ)) and the

integrals can be evaluated straightforwardly using Gaussion quadrature.

The diffusive term in the Galerkin contribution can be transformed to an

integral over the reference element as:

Be
Galdiff

(V h,W h) : =

∫

Ee
n

W h
,i · K̃ijV

h
,j dE =

∫

Ee
n

∇x̄W
h · Fd(V h)dE

=

∫

Ê
IT

x̄ ∇ξ̄W
h · Fd(V h) |JE | dÊ

where the diffusive flux tensor FdT
= (F d

1
T
, F d

2
T
, F d

3
T
) and F d

i = K̃ijV
h
,j for i, j =

1, 2, 3. We can write the diffusive flux tensor as

Fd(V h) = K∇x̄V
h = KIT

x̄ ∇ξ̄V
h

where K is the tensor defined as K = [K̃ij ] for i, j = 1, 2, 3.

The least-squares term in the weak formulation can be written in a closed form as

Be
LS(V h,W h) : =

∫

Ee
n

(LV W
h) · τ̃(LV V

h)dE

=

∫

Ee
n

(ÃT∇xW
h −∇x̄ · K∇x̄W

h) · τ̃ (ÃT∇xV
h −∇x̄ · K∇x̄V

h)dE

where ÃT = (Ã0, . . . , Ãd). Let us transform the Navier-Stokes differential operator

into a differential operator on the master element:

ÃT∇x −∇x̄ · K∇x̄ = ÃTIT∇ξ −∇x̄ · K∇x̄

= Ã0

(
1

∆t

∂

∂ξ0
+ ĪT

t ∇ξ̄

)

+ ATIT
x̄ ∇ξ̄ − IT

x̄ ∇ξ̄ · KIT
x̄ ∇ξ̄

with AT = (Ã1, . . . , Ãd). Then, the least-squares term can be written as

Be
LS(V h,W h) =

∫

Ê

(
1

∆t
Ã0

∂W h

∂ξ0
+ Ã0ĪT

t ∇ξ̄W
h + AT IT

x̄ ∇ξ̄W
h − IT

x̄ ∇ξ̄ · KIT
x̄ ∇ξ̄W

h

)

· τ̃
(

2

∆t
Ã0

4
V e + Ã0ĪT

t ∇ξ̄V
h + AT IT

x̄ ∇ξ̄V
h − IT

x̄ ∇ξ̄ · KIT
x̄ ∇ξ̄V

h

)

|JE |dÊ ,

where we used

∂V h

∂ξ0
=

nen∑

a=1

{

ψ̂(ξ̄a)va;n+1 − ψ̂(ξ̄a)ṽa;n

}

= 2
4
V e(x̄).

The boundary integral in the weak formulation can be transformed to the integral

on the reference element by using the following definition given in [55]:
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Chapter 6. Galerkin least-squares finite element formulation

Given a parametrization F : (0, 1)d−1 → S, where S is a hypersurface in Rd, integra-

tion over the surface S is defined as:
∫

S

f(x)dx =

∫

(0,1)d−1

f(F (ξ))

∣
∣
∣
∣

∂F

∂ξ1
∧ · · · ∧ ∂F

∂ξd−1

∣
∣
∣
∣
dξ, (6.5.4)

where the outer product v = w1 ∧ · · · ∧ wd−1, for d − 1 vectors wi ∈ Rd, is defined

component-wise by the following rule

vj = det (w1, . . . , wd−1, ej),

with ej the jth basis vector in Rd.

Using the above definition we can transform the integral over any of the six space-time

faces Qe
n of the element Ee

n to an integral over the appropriate face on the boundary

Q̂ of the reference element Ê using the parametrization Ge
n. The Jacobian of the

transformation will be denoted by JQ and it is defined by
∣
∣
∣

∂F
∂ξ1

∧ · · · ∧ ∂F
∂ξd−1

∣
∣
∣ . Then,

the boundary integral in the weak formulation can be transformed to the reference

element as

Be
Bound(V

h,W h) :=

∫

Q̂
W h ·

(

Fi(V
h) − n̄ · vF0(V

h) −Ki IT
x̄ ∇ξ̄V

h
)

n̄i |JQ|dQ̂,

where Ki = (K̃i1, K̃i2, K̃i3) for i = 1, 2, 3.

Finally, the jump term in the weak formulation can be written in terms of the

reference coordinates as

Be
jump(V h,W h) :=

∫

Ω̂

W h(Ge
n(1, ξ̄))F0(V

e(Ge
n(1, ξ̄))) |Jx̄(1, ξ̄)| dΩ̂

−
∫

Ω̂

W h(Ge
n(0, ξ̄))F0(V

e(Ge
n−1(1, ξ̄))) |Jx̄(0, ξ̄)| dΩ̂.

Since the jump term is added to the weak formulation to ensure the weak continuity

between the space-time slabs, let us denote the trial solution related to an element in

the previous time slab by

V e
(n)(x̄) := V e(t−n , x̄) = V e(Ge

n−1(1, ξ̄)).

In the remainder of this section we compute the weak formulation when the test

function defined in (6.4.6) is used.

Define the vectors v and ṽ on each element Ee
n of the nth space-time slab similarly

as in (6.4.3) and (6.4.4), respectively. When we collect all contributions to the weak

formulation and set the test function equal to

W h(t, x̄) = ψ̂a(ξ̄),
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6.5. Space-time finite element discretization

then we obtain the following nodal entry of the element residual in the nonlinear

system of algebraic equations for v and ṽ in the space-time element Ee
n :

Re
a(v, ṽ) =

∫

Ω̂

ψ̂a(ξ̄) · F0(V
e(x̄)) |Jx̄(1, ξ̄)| dΩ̂ −

∫

Ω̂

ψ̂a(ξ̄) · F0(V
e
(n)(x̄)) |Jx̄(0, ξ̄)| dΩ̂

−
∫

Ê
ĪT

t ∇ξ̄ψ̂a(ξ̄) · F0(V
h) |JE | dÊ −

∫

Ê
IT

x̄ ∇ξ̄ψ̂a(ξ̄) · Fa(V h) |JE | dÊ

+

∫

Ê
IT

x̄ ∇ξ̄ψ̂a(ξ̄) · K IT
x̄ ∇ξ̄V

h |JE | dÊ

+

∫

Ê

(

Ã0ĪT
t ∇ξ̄ψ̂a(ξ̄) + AT IT

x̄ ∇ξ̄ψ̂a(ξ̄) − IT
x̄ ∇ξ̄ · KIT

x̄ ∇ξ̄ψ̂a(x̄)
)

· τ̃

(
2

∆t
Ã0

4
V e + Ã0ĪT

t ∇ξ̄V
h + AT IT

x̄ ∇ξ̄V
h − IT

x̄ ∇ξ̄ · KIT
x̄ ∇ξ̄V

h

)

|JE |dÊ

+

∫

Q̂
ψ̂a(ξ̄) ·

(

Fi(V
h) − n̄ · vF0(V

h) −Ki IT
x̄ ∇ξ̄V

h
)

n̄i |JQ|dQ̂ (6.5.5)

for a = 1, . . . , nen.

Similarly, for the test function

W h(t, x̄) = (λ1(ξ0) − λ2(ξ0))ψ̂a(ξ̄),

we obtain the following nodal element entry in the nonlinear system of algebraic

equations for v and ṽ

R̃e
a(v, ṽ) = −

∫

Ω̂

ψ̂a(ξ̄) · F0(V
e(x̄)) |Jx̄(1, ξ̄)| dΩ̂ −

∫

Ω̂

ψ̂a(ξ̄) · F0(V
e
(n)(x̄)) |Jx̄(0, ξ̄)| dΩ̂

+

∫

Ê

(
2

∆t
ψ̂a(ξ̄) − (1 − 2ξ0)ĪT

t ∇ξ̄ψ̂a(ξ̄)

)

· F0(V
h) |JE | dÊ

−
∫

Ê
(1 − 2ξ0)IT

x̄ ∇ξ̄ψ̂a(ξ̄) · Fa(V h) |JE | dÊ

+

∫

Ê
(1 − 2ξ0)IT

x̄ ∇ξ̄ψ̂a(ξ̄) · K IT
x̄ ∇ξ̄V

h |JE | dÊ

+

∫

Ê

(

− 2

∆t
Ã0ψ̂a(ξ̄)

)

· τ̃

(
2

∆t
Ã0

4
V e + Ã0ĪT

t ∇ξ̄V
h + AT IT

x̄ ∇ξ̄V
h − IT

x̄ ∇ξ̄ · KIT
x̄ ∇ξ̄V

h

)

|JE |dÊ

+

∫

Ê
(1 − 2ξ0)

(

Ã0ĪT
t ∇ξ̄ψ̂a(ξ̄) + AT IT

x̄ ∇ξ̄ψ̂a(ξ̄) − IT
x̄ ∇ξ̄ · KIT

x̄ ∇ξ̄ψ̂a(ξ̄)
)

· τ̃
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(
2

∆t
Ã0

4
V e + Ã0ĪT

t ∇ξ̄V
h + AT IT

x̄ ∇ξ̄V
h − IT

x̄ ∇ξ̄ · KIT
x̄ ∇ξ̄V

h

)

|JE |dÊ

+

∫

Q̂
(1 − 2ξ0)ψ̂a(ξ̄) ·

(

Fi(V
h) − n̄ · vF0(V

h) −Ki IT
x̄ ∇ξ̄V

h
)

n̄i |JQ|dQ̂,

(6.5.6)

for a = 1, . . . , nen.

6.6 The solution of the nonlinear system

The time-discontinuous Galerkin finite element method requires the solution of a large

set of coupled nonlinear algebraic equations. These equations are solved with a New-

ton method, but for efficiency and robustness the choice of variables in the lineariza-

tion process is important. In [50], a predictor multi-corrector method is developed in

order to reduce the nonlinear system to a sequence of linear systems. In particular

two finite element discretizations are considered, constant-in-time and linear-in-time.

In this section, we describe a different method of solving the nonlinear equations by

considering the structure of the matrices that result from the finite element discretiza-

tion. In Section 6.6.1 we compare this method with the original algorithm of Shakib

[51] using the advection-diffusion equation as a model problem. For convenience, we

summarize the main steps of the predictor multi-corrector algorithm defined in [50]

in Appendix C.1.

In this section we present an iterative technique, based on a Newton method, to solve

the nonlinear algebraic system (6.4.7)-(6.4.8). Define

R(i) = G(v(i), ṽ(i)),

R̃(i) = G̃(v(i), ṽ(i)), (6.6.1)

where v(i) and ṽ(i) are the ith iterative approximation of v and ṽ, respectively. Then,

the ith approximation of the Jacobian matrix of (6.6.1) can be defined as:

M (i) =




M

(i)
11 M

(i)
12

M
(i)
21 M

(i)
22



 ,

where

M
(i)
11 =

∂G(v(i), ṽ(i))

∂v
, M

(i)
12 =

∂G(v(i), ṽ(i))

∂ṽ
,

M
(i)
21 =

∂G̃(v(i), ṽ(i))

∂v
, M

(i)
22 =

∂G̃(v(i), ṽ(i))

∂ṽ
.
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In a Newton algorithm we need to solve the following system:

M
(i)
11 ∆v(i) +M

(i)
12 ∆ṽ(i) = −R(i),

M
(i)
21 ∆v(i) +M

(i)
22 ∆ṽ(i) = −R̃(i), (6.6.2)

where ∆v(i) = v(i+1) − v(i) and ∆ṽ(i) = ṽ(i+1) − ṽ(i). Re-writing (6.6.1) to this form

will help us recognize or investigate the properties associated with the individual

blocks of the equation system. The solution of this large linear system is non-trivial

and in order to simplify the solution procedure, we first investigate the properties of

the individual terms. We can recognize that the matrices M12 and M21 represent the

coupling between the old and new time levels of a space-time slab.

Note that the constant-in-time approximation of the space-time Galerkin least-squares

variational equation leads to an algebraic system, having half as many equations and

unknowns as the linear-in-time approximation. The constant-in-time approximation

has low order of time accuracy, but has good stability properties and is computation-

ally efficient. We use this algorithm in Chapter 7 for solving steady problems.

Assumption 6.6.1 Assume that the flux Jacobian matrices Ã`, ` = 0, . . . , 3 and K̃ij ,

i, j = 1, 2, 3 for the symmetrized incompressible Navier-Stokes equations are constant

in time in each space-time slab during each Newton iteration step.

Note that the flux Jacobian matrices are evaluated at the mid-time of the space-time

slab, that is using V̄ e, and that we update them after each Newton iteration step.

First, observe that the Jacobian matrices M11 and M12 can be written in a close

relation as

Mab
1i = δ1i

∫

Ω̂

ψ̂a(ξ̄) · Ã0ψ̂b(ξ̄) |Jx̄(1, ξ̄)| dΩ̂

−
∫

Ê
ĪT

t ∇ξ̄ψ̂a(ξ̄) · Ã0fi(ξ0) ψ̂b(ξ̄) |JE | dÊ

−
∫

Ê
IT

x̄ ∇ξ̄ψ̂a(ξ̄) · Afi(ξ0) ψ̂b(ξ̄) |JE | dÊ

+

∫

Ê
IT

x̄ ∇ξ̄ψ̂a(ξ̄) · K IT
x̄ fi(ξ0)∇ξ̄ψ̂b(ξ̄) |JE | dÊ

+

∫

Ê

(

Ã0ĪT
t ∇ξ̄ψ̂a(ξ̄) + ATIT

x̄ ∇ξ̄ψ̂a(ξ̄) − IT
x̄ ∇ξ̄ · KIT

x̄ ∇ξ̄ψ̂a(ξ̄)
)

· τ̃
(

± 1

∆t
Ã0 ψ̂b(ξ̄) + fi(ξ0)

[

Ã0ĪT
t ∇ξ̄ψ̂b(ξ̄)+

+ATIT
x̄ ∇ξ̄ψ̂b(ξ̄) − IT

x̄ ∇ξ̄ · KIT
x̄ ∇ξ̄ψ̂b(ξ̄)

])

|JE |dÊ
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+

∫

Q̂
ψ̂a(ξ̄) · fi(ξ0)

(

Ãi ψ̂b(ξ̄) −Ki IT
x̄ ∇ξ̄ψ̂b(ξ̄)

)

n̄i |JQ|dQ̂ (6.6.3)

for i = 1, 2, where δij is the Kronecker delta, fi(ξ0) = 1 − λi(ξ0) ( i.e. for Mab
11 the

coefficient fi is ξ0 and for Mab
12 it is (1 − ξ0) ). The ± sign in front of the underlined

term means that it’s sign is + for Mab
11 and − in case of Mab

12 .

In the above integrals we used the relation

∂V h(t(ξ), x̄(ξ))

∂ξ̄i
=

nen∑

a=1

{

ξ0
∂ψ̂a(ξ̄)

∂ξ̄i
va;n+1 + (1 − ξ0)

∂ψ̂a(ξ̄)

∂ξ̄i
ṽa;n

}

, i = 1, 2, 3,

and combined with

∂V h(t(ξ), x̄(ξ))

∂va
= λ2(ξ0)ψ̂a(ξ̄) = ξ0ψ̂a(ξ̄),

∂V h(t(ξ), x̄(ξ))

∂ṽa
= λ1(ξ0)ψ̂a(ξ̄) = (1 − ξ0)ψ̂a(ξ̄),

and

∂

∂va

(
∇x̄V

h(t(ξ), x̄(ξ))
)

= ξ0Ix̄∇ξ̄ψ̂a(ξ̄),

∂

∂ṽa

(
∇x̄V

h(t(ξ), x̄(ξ))
)

= (1 − ξ0)Ix̄∇ξ̄ψ̂a(ξ̄),

for a = 1, . . . , nen explains the function f(ξ0). The sign ± of the underlined term

arises from

∂
4
V e(x̄)

∂va
=

1

2
ψ̂a(ξ̄),

∂
4
V e(x̄)

∂ṽa
= −1

2
ψ̂a(ξ̄).

Furthermore, we used

∂F`(V
h)

∂va
=
∂F`(V

h)

∂V h

∂V h

∂va
= Ã`(V

h)ξ0ψ̂a(ξ̄),

∂F`(V
h)

∂ṽa
=
∂F`(V

h)

∂V h

∂V h

∂ṽa
= Ã`(V

h)(1 − ξ0)ψ̂a(ξ̄).

Similarly, we obtain the matrices M21 and M22 as follows

Mab
2i = (δ2i − 1)

∫

Ω̂

ψ̂a(ξ̄) · Ã0(V
e)ψ̂b(ξ̄) |Jx̄(1, ξ̄)| dΩ̂

+

∫

Ê

(
2

∆t
ψ̂a(ξ̄) − (1 − 2ξ0)Ī

T
t ∇ξ̄ψ̂a(ξ̄)

)

· Ã0fi(ξ0)ψ̂b(ξ̄) |JE | dÊ

−

∫

Ê

(1 − 2ξ0)I
T
x̄ ∇ξ̄ψ̂a(ξ̄) · A(V h)fi(ξ0)ψ̂b(ξ̄) |JE | dÊ

+

∫

Ê

(1 − 2ξ0)I
T
x̄ ∇ξ̄ψ̂a(ξ̄) · K IT

x̄ fi(ξ0)∇ξ̄ψ̂b(ξ̄) |JE | dÊ
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+

∫

Ê

(

−
2

∆t
Ã0ψ̂a(ξ̄) + (1 − 2ξ0)

[

Ã0Ī
T
t ∇ξ̄ψ̂a(ξ̄) + AT IT

x̄ ∇ξ̄ψ̂a(ξ̄) − IT
x̄ ∇ξ̄ · KIT

x̄ ∇ξ̄ψ̂a(ξ̄)
])

τ̃

(

∓
1

∆t
Ã0 ψ̂b(ξ̄) + fi(ξ0)

[

Ã0Ī
T
t ∇ξ̄ψ̂b(ξ̄) + AT IT

x̄ ∇ξ̄ψ̂b(ξ̄) − IT
x̄ ∇ξ̄ · KIT

x̄ ∇ξ̄ψ̂b(ξ̄)
])

|JE |dÊ

+

∫

Q̂

(1 − 2ξ0)ψ̂a(ξ̄) · fi(ξ0)
(

Ãi(V
h) ψ̂b(ξ̄) −Ki IT

x̄ ∇ξ̄ψ̂b(ξ̄)
)

n̄i |JQ|dQ̂, (6.6.4)

where the sign of the underlined term is − for Mab
22 and + for Mab

21 .

Let us review some of the main points of the predictor multi-corrector method, sum-

marized in Appendix C.1. This method neglects the use of the matrices M12 and

M21, that means that the coupling matrices between the old and new time levels

are not taken into account. The predictor multi-corrector method in [50], proposed

to solve the linear system (6.6.2) iteratively. First, iterations for the 4v(i) equation

are performed, followed by iterations for the 4ṽ(i) equation. Using the notations of

Appendix C.1, the matrices M∗ and M̃∗ are approximations of M11 and M22, respec-

tively. In [50] two different algorithms are proposed, and implicit and an explicit one,

but we only consider the first one. In the implicit case two set of matrices are used.

The first one is to set M̃∗ = M∗ = (M11−(contribution1)), where contribution1 is the

underlined term in (6.6.3). The second alternative is: M ∗ = (M11 − (contribution1)),

as before, and M̃∗ = (M22 − (contribution2)), where contribution2 is the underlined

term in (6.6.4). In our computations using the predictor multi-corrector method we

only consider the first choice. The benefit of this choice is that we can employ the

same left-hand-side matrix for both systems.

Since we are interested in time accuracy using a linear-in-time approximation, a space-

time definition of the stabilization matrix is needed. When the least-squares term is

added to the linear system and ∆t is small, the predictor multi-corrector scheme will

not converge with the current definition of the stabilization matrix. Therefore, this

method cannot be used for small time steps, which is crucial to obtain time accurate

solutions. It is necessary to extend the definition of the stabilization parameter τm in

Definition 4.4.1 given in the following way:

Definition 6.6.1 The stabilization parameter τm on the space-time elements Ee
n is

defined as

τm(x) = min

{
∆t

ρ
,

he

2ρ|u(x)|ξ(Ree(x))

}

(6.6.5)

where we used the same notations as in Definition 4.4.1.

Note that the definition of the stabilization parameter τe is τe(x) = τm

cv
, where τm is

defined in (6.6.5). For steady state computations the ∆t term can be neglected from

the definition of the stabilization parameters.

129



Chapter 6. Galerkin least-squares finite element formulation

Instead of using the predictor multi-corrector method discussed in Appendix C.1, we

also investigate an alternative method which uses the structure of the Jacobian matrix

M (i). Let us introduce a different approach to solve the system (6.6.2). Consider R(i)

and R̃(i) in terms of the unknown vectors

v̄ = (v̄T
1 , . . . , v̄

T
nnp

)T ,

4
v = (

4
v1

T , . . . ,
4
vT

nnp
)T ,

then, the Jacobian matrix corresponding to the system

R(i) = R(v̄(i),
4
v (i)),

R̃(i) = R̃(v̄(i),
4
v (i))

becomes

M̂ (i) =




M

(i)
11 +M

(i)
12 M

(i)
11 −M

(i)
12

M
(i)
21 +M

(i)
22 M

(i)
21 −M

(i)
22



 .

It is appealing to reduce the matrix M̂ (i) to a block diagonal form. Under some

specific flow conditions, given more precisely later, it can be shown that M
(i)
12 ≈M

(i)
11

and M
(i)
21 ≈ −M (i)

22 . The Newton algorithm, then can be simplified by solving the

following two linear systems

2M
(i)
11 ∆v̄(i) = −R(i),

−2M
(i)
22 ∆

4
v (i) = −R̃(i), (6.6.6)

where ∆v̄(i) = v̄(i+1) − v̄(i) and ∆
4
v (i) =

4
v (i+1) − 4

v (i). The solution of the linear

systems (6.6.2) is then computed as:

∆v(i) = ∆v̄(i) + ∆
4
v (i),

∆ṽ(i) = ∆v̄(i) − ∆
4
v (i),

and this results in a new solution technique, described more precisely in Appendix

C.2. Our experience shows that the Newton method described in this section results

in a robust discretization technique. In the remaining part of this section we give

conditions under which the above approximation is valid, and in the next section we

compare the different solution techniques.

The use of this new approach requires, however, that the matrix has a particular

structure. Numerical experiments show that when the Reynolds number is small

(Re ≈ O(1)), the “diag” method is not valid, therefore, this solution method cannot

be used. For Re >> 1, this method is applicable and useful for real applications.

The failure of the method at small Reynolds numbers is due to the fact that the
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6.6. The solution of the nonlinear system

approximations M
(i)
12 ≈ M

(i)
11 and M

(i)
21 ≈ −M (i)

22 are not valid in this regime. This

becomes more clear when considering the matrices for the Navier-Stokes equations:

Mab
11 −Mab

12 =

∫

Ω̂

ψ̂a(ξ̄) · Ã0ψ̂b(ξ̄) |Jx̄(1, ξ̄)| dΩ̂

+ 2

∫

Ê

(

ATIT
x̄ ∇ξ̄ψ̂a(ξ̄) − IT

x̄ ∇ξ̄ · KIT
x̄ ∇ξ̄ψ̂a(ξ̄)

)

· τ̃
(

1

∆t
Ã0 ψ̂b(ξ̄)

)

Mab
22 +Mab

21 =

∫

Ω̂

ψ̂a(ξ̄) · Ã0(V
e)ψ̂b(ξ̄) |Jx̄(1, ξ̄)| dΩ̂

+ 2

∫

Ê

(

− 2

∆t
Ã0ψ̂a(ξ̄)

)

· τ̃
(

AT IT
x̄ ∇ξ̄ψ̂b(ξ̄) − IT

x̄ ∇ξ̄ · KIT
x̄ ∇ξ̄ψ̂b(ξ̄)

)

|JE |dÊ .

From these, it can be concluded that indeed if the Reynolds number is small, then the

diffusion matrices dominate in the stabilization operator and M
(i)
21 ≈ −M (i)

22 is not a

good approximation.

6.6.1 Evaluation of approximate Newton algorithms

In this section we present some numerical results for the scalar advection-diffusion

equation

φ,t + a · ∇φ = µφ,ii, i = 1, 2, 3,

on the domain Ω = [0, 1]3, with the velocity a = (1, 0, 0), and a positive constant µ,

using different methods to solve the resulting algebraic system. Dirichlet boundary

conditions φ = 2 are applied at the inlet (x1 = 0) and along the side walls and

Neumann conditions ∂φ
∂x1

= 0 at the outlet (x1 = 1). The initial condition is φ =

2 − 10x1(1 − x1)x2(1 − x2)x3(1 − x3).

We solved the advection-diffusion equation with a Galerkin least-squares discretiza-

tion. The computational mesh consists of 4 × 4 × 4 uniform hexahedral elements,

quadratic finite element basis functions in space and linear-in-time. We compare

three methods:

(1) solving the linear system (6.6.2) with a direct method, which we call from now

on the “full system” method,

(2) the third-order predictor multi-corrector algorithm (denoted by “pred-mult”),

discussed in Appendix C.1,

(3) the approximation method (6.6.6), described in the previous section, that is

using the diagonal block matrices M11 and M22, which we call “diag” method.
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Chapter 6. Galerkin least-squares finite element formulation

First we compare the convergence to the steady state solution of the three methods.

We choose µ = 1/100 and a time step ∆t = 0.5. In Figure 6.2, the normalized residual

is plotted for all three methods, as a function of time. The normalized residual at

time t is defined as

‖φ(t) − φ(t− ∆t)‖l∞(Ω).

For this case all three methods are identical. Both for the “pred-mult” and “diag”

methods 10 predictor steps are performed and the linear system is solved with a

GMRES algorithm with a tolerance of 10−12.

We observe that if the time step becomes too small (in this particular example when

∆t < 0.2), the predictor multi-corrector algorithm, using Definition 4.4.1 for the

stabilization parameters, cannot solve the linear system. The residual of the solution is

increasing and the method does not converge. The computed stabilization parameter

for this example is τ = 0.21 for each element in the computational mesh. For a

time step of ∆t = 0.001, we use the stabilization parameter given in Definition 6.6.1

and recomputed all three methods, see Figure 6.3. We can, however, still observe

the instability in the predictor multi-corrector method. This instability is due to the

presence of the underlined term in (6.6.3) in the M11 matrix. If we omit this term

from the M11 matrix, then the “pred-mult” method becomes stable and all three

methods have the same convergence behavior, see Figure 6.4. Table 6.1 indicates

that all three methods, with the proper choice of the stabilization parameter, are
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Figure 6.2: Convergence to steady state for three different solution techniques used to

solve the linear system for the advection-diffusion equation. ∆t = 0.5 and µ = 1/100.
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Figure 6.3: Convergence to steady state for three different solution techniques used

to solve the linear system for the advection-diffusion equation. ∆t = 0.001 and

µ = 1/100.

second-order accurate in time, but that the time dependent part must be removed

from the stabilization operator when the predictor multi-corrector scheme is used,

which results in an inconsistent finite element discretization.

We also investigate the use of a first order predictor multi-corrector method, denoted

by “pred-mult-c”, that is, a constant-in-time approximation is used. Figure 6.5 com-

pares the “full system”, the “diag” and the “pred-mult-c” methods for a large time

step (here the Definition 4.4.1 of τm will be used) and in Figure 6.6 a small time step

is used for which the stabilization parameter of Definition 6.6.1 is valid.

“full system” “pred-mult” “diag”

1.987963 1.9888002 1.9878829

Table 6.1: Time accuracy, advection-diffusion equation, µ = 1/100.
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Figure 6.4: Convergence to steady state for three different solution techniques used

to solve the linear system for the advection-diffusion equation. ∆t = 0.001 and

µ = 1/100.
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Figure 6.5: Convergence to steady state for three different solution techniques used to

solve the linear system for the advection-diffusion equation. ∆t = 0.5 and µ = 1/100.

134



6.7. Concluding remarks

0 0.005 0.01 0.015 0.02
5.3

5.4

5.5

5.6

5.7

5.8

5.9
x 10

−4

Time

N
or

m
al

iz
ed

 r
es

id
ua

l

full system 
pred−mult−c 
diag

Figure 6.6: Convergence to steady state for three different solution techniques used

to solve the linear system for the advection-diffusion equation. ∆t = 0.001 and

µ = 1/100.

6.7 Concluding remarks

In this chapter we introduced the time-discontinuous Galerkin least-squares finite el-

ement discretization for the incompressible Navier-Stokes equations. The discretiza-

tion method is described for the symmetrized form of the Navier-Stokes equations,

the same formulation can, however, be used for the set of primitive variables (p, u, T ),

which we use in the next chapter of this thesis. Having established the method for

entropy variables, we can transform the variational equation to the pressure primitive

variables, which are commonly used for incompressible flows.

The time-discontinuous Galerkin method results in a large system of nonlinear alge-

braic equations. For the solution of this system we propose a new solution strategy.

This new technique is then compared with other solution methods using the advection-

diffusion equation as a model problem. More complicated cases will be considered in

Chapter 7.
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Numerical examples

This chapter discusses several test cases and applications to verify and demonstrate

the Galerkin least-squares finite element method for the incompressible Navier-Stokes

equations. The main emphasis is to employ the newly designed stabilization matrices

and to compare the results with existing and well studied results.

The computations presented in this chapter were performed on a personal computer.

In the construction of the finite element code, we used the deal.II library. Deal.II is a

C++ program library [2] which provides an excellent interface to handle complex data

structures and algorithms. It is well suited for mesh adaptation, enables the use of a

variety of finite elements in several space dimensions (continuous or discontinuous),

and also includes higher order elements.

7.1 Channel flow

The main difficulty in solving the incompressible Navier-Stokes equations is their

nonlinearity arising from the convective acceleration terms, i.e. ui
∂uj

∂xi
. There are,

however, a few special cases for which the convective acceleration vanishes due to

the nature of the geometry of the flow. In these cases it is possible to find the

exact solution of the Navier-Stokes equations. One of these examples is the so-called

Poiseuille flow, which we discuss in this section. Since our computer program is a

fully three dimensional code, we verify it on two examples, which are similar to the

Poiseuille flow.

Let us introduce some notations. A point x ∈ R3 has coordinates x = (x1, x2, x3)

and ui, i = 1, 2, 3 denote the components of the velocity vector u in the ith Cartesian

coordinate direction. Consider a two dimensional steady flow between two infinite

parallel flat walls. The fluid particles are moving in the x1−direction, parallel to the

plates, and there is no velocity in the x2 or x3−direction, that is u2 ≡ 0 and u3 ≡ 0. In
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this case, it follows from the continuity equation that ∂u1

∂x1
= 0. Furthermore, there is

no variation of u in the z−direction for infinite plates. Therefore, u3(x) is a function

of x2 only. If these conditions are used in the Navier-Stokes equations, we obtain for

the equations of motion the following system:

0 = −1

ρ

∂p

∂x1
+

ν

Re

∂2u1

∂x2
2

. (7.1.1)

0 = −1

ρ

∂p

∂x2
(7.1.2)

0 = −1

ρ

∂p

∂x3
. (7.1.3)

It follows that p(x) is a linear function of x1 only, and combined with (7.1.1), we

obtain

u1(x) =
Re

2µ

(
∂p

∂x1

)

x2
2 + c1x2 + c2, c1, c2 ∈ R.

Note that the pressure gradient is constant. The two constants are determined from

the boundary conditions.

• at x2 = 0 and x2 = b

u1 = 0 =⇒ c2 = 0, c1 = −Re

2µ

(
∂p

∂x1

)

b.

Therefore, the fluid motion is given by

u1(x) =
Re

2µ

(
∂p

∂x1

)

x2(x2 − b). (7.1.4)

The pressure variation throughout the fluid can be obtained from

p(x) =

(
∂p

∂x1

)

x1 + p0, (7.1.5)

where p0 is the reference pressure.

Let us compute the solution of the temperature equation, which for the Poiseuille

flow is given by

κ

PrEc

∂2T

∂x2
2

= −µ
(
∂u1

∂x2

)2

. (7.1.6)

Solving the above ODE, we obtain

T (x) = − C

48
(2x2 − b)4 + c1x2 + c2, with C =

Re2 PrEc

4µκ

(
∂p

∂x1

)2

. (7.1.7)

Assuming equal temperatures of the walls, that is
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• at x2 = 0 and x2 = b : T = T0,

the coefficients c1 and c2 can be specified and we obtain that the temperature distri-

bution is represented by a parabola of degree four:

T (x) − T0 =
Cb4

48

[

1 −
(

2
x2

b
− 1
)4
]

, with C =
Re2 PrEc

4µκ

(
∂p

∂x1

)2

. (7.1.8)

For the Poiseuille flow the boundary conditions consist of:

Periodic boundary: We assume that the flow is periodic in the x3-direction.

No-slip flow boundary conditions: The no-slip walls are:

• x2 = 0 and x2 = b,

along which the velocity and the temperature are prescribed, that is u = (0, 0, 0)T at

the walls and both walls have the same temperature, T = T0.

Inflow boundary conditions: The inflow boundary is

• x1 = 0,

where the velocity field is prescribed, u = (u1(x), 0, 0)T , with u1(x) given in (7.1.4),

and the temperature field is set equal to the initial temperature T = T0. The variation

in temperature in the flow domain is due to friction only.

Outflow boundary conditions: The outflow boundary is

• x1 = L,

where L is the length of the channel. We set the temperature at the outflow boundary

equal to its exact value given in (7.1.8). The flow is characterized by a decreasing

linear pressure field. By prescribing the pressure gradient and initializing the pressure

to p0, the pressure at the outflow boundary can be obtained as

pout =

(
∂p

∂x1

)

L+ p0. (7.1.9)

This pressure is prescribed at the outflow boundary and enters in the advective fluxes

over the outflow boundary. Furthermore, in the diffusive fluxes we insert the following

constraints:

nTSr = 0 (7.1.10)

nTSs = 0 (7.1.11)
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where r and s are the two tangential vectors at the outflow boundary and the matrix

S = (sij), for i, j = 1, 2, 3, contains the stresses sij = ui,j + uj,i. For our particular

test case, the constraints (7.1.10-7.1.11) reduce to

nTSr = s12 = u1,2 + u2,1 = u1,2 = 0

nTSs = s13 = u1,3 + u3,1 = 0

where the last equality is straightforwardly satisfied due to the periodicity in the

x3-direction.

7.1.1 Verification of the numerical method

Poiseuille flow. In this example we verify the numerical solution of the Poiseuille

flow obtained by solving the incompressible Navier-Stokes equations using the newly

defined stabilization matrix τY for primitive variables (4.3.13). The Reynolds number,

which is based on the maximum velocity and channel width, was set to Re = 1. We

study the influence of the parameter ω in the stabilization matrix τY on the conver-

gence of the solution to steady state and on the accuracy of the numerical method. In

these computations we have used linear basis functions in space and constant-in-time.

Note that the numerical scheme is exact for the velocity and pressure if quadratic basis

functions are used, which was also confirmed by the numerical simulations.

The Poiseuille flow is solved on a unit cube [0, 1]3. Dirichlet conditions are applied at

the inlet and along the solid walls and periodic boundary conditions at the side wall,

see the introduction to Section 7.1. The computational domain is subdivided into

equidistant elements and the convergence of the solution to steady state is observed

when different values of ω are employed in the stabilization operator. Let us recall

that for the linearized incompressible Navier-Stokes equations, we obtained that the

Galerkin least-squares method is stable when the ω parameter satisfies:

ω ∈
(

−1 −
√

5

2
,
−1 +

√
5

2

)

.

Therefore, we choose some specific values of ω in this interval, for example, one close

to the minimum and the other to the maximum of admissible values. When ω = 0,

the stabilization matrix is identical to the one discussed in [23]. We also introduce the

diagonal stabilization matrix, which is the stabilization used in [13]. In Figure 7.1, we

observe that for the different stabilization matrices the solution converges to steady

state at approximately the same speed when the element size is equal to h = 1/16.

The algebraic system was solved with the first order predictor multi-corrector method,

described in Section 6.6. The resulting linear system was solved in each iteration of

the multi-corrector method with the GMRES iterative solver [2].

The first important remark is that for ω = 0.6, GMRES is more robust and needs

much less iterations to converge with the same tolerance than for other values of ω.
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Figure 7.1: Poiseuille flow, residual convergence for different values of ω, h = 1/16,

Re = 1.

The same robustness of the iterative solver is observed when the mesh is refined, but

for ω = 0.6 the solution now converges much faster to steady state, see Figure 7.2.

Next, we studied what is the influence of ω on the spatial accuracy. In Table 7.1,

some values of the L2-norm of the error are given, which are plotted in Figure 7.3.

We conclude that the ω parameter does not influence the accuracy of the method and

that the algorithm converges with second order accuracy to the exact solution.

A square channel. In this example we validate the performance of our computer

program in three space dimensions. Consider the following divergence free initial

velocity field for the incompressible Navier-Stokes equations in the domain Ω = [0, 1]3,

Element size ω = −0.5 ω = 0 ω = 0.6

1/10 0.0956049 0.0958273 0.0956631

1/16 0.0436049 0.0413225 0.043563

1/20 0.0290783 0.0290625 0.0290509

1/25 0.0201648 0.0190827 0.0191477

Table 7.1: L2 error for Poiseuille flow computations as a function of mesh size, Re = 1.
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Figure 7.2: Poiseuille flow, residual convergence for different values of ω, h = 1/25,

Re = 1.
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which is also specified at the inflow (x1 = 0) boundary

u1 = 16x2(1 − x2)x3(1 − x3), (7.1.12)

u2 = u3 = 0. (7.1.13)

At the outflow boundary (x1 = 1) the pressure p is prescribed as well as the natural

boundary conditions ∂u1

∂n = 0, ∂u2

∂n = 0, ∂u3

∂n = 0, with n the unit outward normal

vector. At the four side walls we impose the no-slip boundary condition u = 0.

The time step is initially set equal to ∆t = 0.1 and since we are interested in the

convergence to steady state, we gradually increase the time step till we reach the

steady state. The test is performed on a 4 × 4 × 4 mesh. In this approximation, the

interpolation functions are quadratic in space and constant-in-time. We give examples

for two values of the channel length. The Reynolds number is based on the maximum

inflow velocity and the width of the channel.

(a) Consider Re = 1. In Figure 7.4 the convergence to steady state of the solution

is shown on a logarithmic scale when the non-diagonal stabilization matrix (4.3.13)

with ω = 0.6, and the diagonal stabilization matrix τdiag = diag (τc, τm, τm, τm) are

used. Both stabilization operators give essentially the same convergence to steady

state. Note that the choice for ω = 0.6 is due to its nice properties we experienced in

the previous example.
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Figure 7.4: Residual convergence for τdiag and τY for ω = 0.6, with Re = 1.
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Note that umax = 1 at the inflow and from the momentum equations, it is straight-

forward to see that the pressure field is linear in x1. Figure 7.5 shows the velocity and

pressure contours at x3 = 1/2. It can be seen that both the velocity field becomes two

dimensional further downstream, with a vanishing u2 component, and the pressure

field is linear.

(b) Consider the same test case as in (a) where we double the length of the channel

in the streamwise direction. The convergence to steady state is nearly identical to

case (a), velocity and pressure contours are shown in Figure 7.6 and 7.7, respectively.

In Figure 7.8 we plot the vertical velocity close to the outflow boundary in a cross

section at x3 = 0.5, for both case (a) and (b). This plot shows that a significant

channel length is required to reduce the effect of inflow boundary conditions.

“Stokes flow”. In this example we verify the accuracy of the method when higher

order polynomial basis functions are used and study how the accuracy is influenced

by the use of different stabilization matrices.

Consider the three dimensional domain [0, 1]3 with boundary ∂Ω, and the following

divergence free velocity field

u1 = φ(x2, x3) (7.1.14)

u2 = 0 (7.1.15)

u3 = 0, (7.1.16)
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Figure 7.5: Velocity and pressure contours in the channel [0, 1]3 at Re = 1.
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Figure 7.8: Vertical velocity along the outflow boundary at x3 = 0.5 for the square

channel of length L = 1 and L = 2, respectively, at Re = 1.

with

φ(x2, x3) = C

[

x3(1 − x3)

2
− 1

2

∞∑

n=0

(−1)n cos(αn(2x3 − 1)) cosh(αn(2x2 − 1))

α3
n cosh(αn)

]

(7.1.17)

where C > 0 is a constant and

αn =

(

n+
1

2

)

π.

This field is the exact solution of the boundary value problem

C∆u1 = −1 in Ω = [0, 1]3

u1 = 0 on Γ1,

where ∂Ω = Γ1 ∪ Γ2, with Γ1 = {x2 = 0} ∪ {x2 = 1} ∪ {x3 = 0} ∪ {x3 = 1}.
It is straightforward to verify that a constant pressure gradient in the x1 direction is

obtained

p(x) = − 1

C
x1 + p0,

which together with the velocity field u = (φ(x2, x3), 0, 0)T and φ given in (7.1.17), is

an exact solution of the incompressible Navier-Stokes equations.
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7.2. Driven cavity flow

The boundary conditions are chosen such that the velocity field (7.1.14-7.1.16) is

prescribed along the inflow boundary (x1 = 0), u = (0, 0, 0)T on Γ1, a constant

pressure p is given at the outflow boundary and all normal derivatives of the velocities

vanish at the outflow boundary.

For all cases Re = 1 and C = 28 were used. In this approximation, the finite element

basis functions are linear and quadratic in space and constant-in-time.

Consider the stabilization matrix τY in (4.3.13) as a function of ω. In Figure 7.9,

the convergence of the solution to steady state is plotted on a logarithmic scale for

ω = 0,−0.5 and 0.6 on a 4 × 4 × 4 mesh when quadratic basis functions are used.

The plot shows that the parameter ω does not influence the convergence to the steady

solution for higher order polynomial basis functions. The performance of the GMRES

method is observed to be more robust when ω = 0.6. Therefore, we verified for this

value of ω the accuracy of the method for linear and quadratic polynomial basis

functions. We conclude that this choice of ω does not degrade accuracy, see Figure

7.10.

7.2 Driven cavity flow

The driven cavity flow is a classical problem to test the performance of numerical

methods for incompressible flows. The top boundary of a square domain slides in
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Figure 7.9: Convergence to steady state for the “Stokes flow”, h = 1/4, Re = 1.
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Figure 7.10: Spatial accuracy under p-refinement for the “Stokes flow”, with ω = 0.6

in the stabilization matrix τY , Re = 1.

the x1-direction with a velocity of u = (1, 0, 0)T causing recirculation inside the

cavity. The velocity field is discontinuous at the top corners, therefore, these points

are singularities. This problem is challenging since the numerical method should be

able to control these singularities and simultaneously represent the smooth regions of

the flow accurately. Note that, since our computational domain is three dimensional,

[0, 1]3, we prescribe periodic boundary conditions in the third direction.

First, consider Re = 1, isothermal incompressible flow, computed using a mesh of

square elements, linear polynomial basis functions in space and constant in time.

For this Reynolds number, a main vortex develops in the center of the cavity. Since

primitive variables are used in these computations, the stabilization matrix τY , given

in (4.3.13) is employed with ω = 0.6. We started our computations using a uniform

30 × 30 mesh and compared the results with a computation using the same number

of elements but with grid clustering near the walls. The main benefit of the clustered

mesh is that the discontinuities at the two top corners are much better represented.

In order to better capture the details of the flow, we further refined the mesh, using

now a 40 × 40 grid. Figures 7.11 and 7.12 show for a uniform and a clustered

mesh, respectively, the pressure and vertical velocity contours and Figures 7.13 and

7.14 show the corresponding horizontal velocity contours and streamlines. Figure 7.15

shows the convergence to the steady state, where m is defined as

m =
ndofs

max
i=1

|V n+1(i) − V n(i)|,
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Figure 7.11: Pressure p and vertical velocity contours u2 for the driven cavity flow on

a 40× 40 uniform mesh, Re = 1.
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Figure 7.12: Pressure p and vertical velocity contours u2 for the driven cavity flow on
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Figure 7.13: Horizontal velocity contours u1 and streamlines for the driven cavity

flow on a 40 × 40 uniform mesh, Re = 1.
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flow on a 40 × 40 clustered mesh, Re = 1.
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7.2. Driven cavity flow

with ndofs the number of degrees of freedom in the finite element discretization and

V n+1 and V n the solution at the time levels tn+1 and tn, respectively.

Since the pressure is discontinuous at the upper corners, the difference between the

maximal and minimal values of the pressure is a good indication for the performance

of the numerical method on the current computational mesh. The larger the pressure

difference, the better the discontinuities are represented. In Table 7.2, we listed the

pressure difference for the various meshes we considered and we also included the

result obtained in [23]. We conclude that mesh clustering has a significant effect on

capturing the singularities.

Consider now a Re = 400, isothermal driven cavity flow, using a 50×50 clustered grid.

For this Reynolds number, in addition to the main vortex in the center of the cavity,

a secondary eddy appears in the right bottom corner of the domain, see Figures 7.16

and 7.17. The results of this computation are compared with the results of Ghia et

al. in [16], which were performed on a uniform grid with 129× 129 points. In Figures

7.18 and 7.19 we compare the results for the velocity values for lines passing through

the geometric center of the cavity. The comparison shows that the present results

correlate well with the results obtained in [16] and for example some typical points,

such as local minima or maxima are well represented.

When we further increase the Reynolds number to Re = 800, two new eddies appear in

addition to the center vortex. In this test case we used the same 50×50 clustered mesh

as for the Re = 400 case. We employed a linear-in-time approximation and solved

the resulting algebraic system with the predictor multi-corrector method, described

in Section 6.6. The convergence of the solution to the steady state is plotted in Figure

7.20. For this Reynolds number case we illustrate in Figures 7.21-7.25 the velocity,

pressure, vorticity contours and the streamlines, respectively. These results show that

the secondary vortex in the lower left corner is also well captured, including the thin

shear layers present in the flow.

Mesh Number of elements pressure variation

uniform 30× 30 68

clustered 30× 30 270

uniform, [23] 40× 40 347

clustered 40× 40 412

Table 7.2: Pressure difference for the driven cavity flow using different meshes at

Re = 1.
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Figure 7.15: Convergence to steady state for the driven cavity flow on a 40 × 40

clustered mesh, Re = 1.
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flow on a 50 × 50 clustered mesh, Re = 400.
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Figure 7.17: Pressure p and vertical velocity contours u2 for the driven cavity flow on

a 50× 50 clustered mesh, Re = 400.
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Figure 7.18: Comparison of driven cavity flow results with those obtained in [16] for

values of the horizontal velocity along x = 0.5 at Re = 400.
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Figure 7.19: Comparison of driven cavity flow results with those obtained in [16] for

values of the vertical velocity along y = 0.5, Re = 400.
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Figure 7.21: Horizontal velocity contours of the driven cavity flow on a 50 × 50

clustered mesh, Re = 800.

7.3 Flow past a circular cylinder

Simulation of the flow past a circular cylinder is a challenging problem for numerical

solution methods. Depending on the Reynolds number, the flow around the cylinder

can have different characteristics. At Reynolds numbers less than or equal to about

40, the flow is steady and separates. A pair of symmetrical counter rotating eddies

forms downstream of the cylinder. As the Reynolds number increases, the eddies be-

come unstable and periodic vortex shedding occurs. The eddies are then transported

downstream and result in the so-called Karman vortex street.

The periodic shedding of vortices is very important from the engineering point of view,

since vortex shedding can induce significant structural vibrations and loads. These

engineering problems occur at high Reynolds numbers where the flow is turbulent. In

this thesis we do not consider high Reynolds number flow, it is, however, important

to verify if the numerical method is capable to accurately represent the flow details

at moderate Reynolds numbers.
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Figure 7.22: Vertical velocity contours of the driven cavity flow on a 50×50 clustered

mesh, Re = 800.
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Re = 800.
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Figure 7.24: Vorticity contours of the driven cavity flow on a 50× 50 clustered mesh,

Re = 800.

Figure 7.25: Streamlines of the driven cavity flow on a 50× 50 clustered mesh, Re =

800.
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7.3.1 Problem statement and finite element mesh

In this section we present the computational domain and the boundary conditions that

apply for the cylinder test case. The finite element mesh and the size of the domain

are shown in Figure 7.26. In the design of the mesh we focus on ensuring adequate

resolution to capture the relevant flow details. At the cylinder wall a grid clustering is

used in order to have enough elements to efficiently resolve the developing boundary

layer. Furthermore, in the downstream region, the number of elements is crucial to

capture the vortex street, therefore, more elements are used in this direction.

In Figure 7.26 we show a slice of the finest mesh used in our computations. Since

we are interested in developing a three dimensional code, a fully three dimensional

mesh is created and we apply periodic boundary conditions in the third direction.
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Figure 7.26: Horizontal slice of the finite element mesh for the circular cylinder with

43200 three dimensional elements, a total of 290400 degrees of freedom.
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7.3. Flow past a circular cylinder

The computations are, however essentially two-dimensional and we use only three

elements in the direction along the cylinder. The mesh generated for the circular

cylinder is a topological “ O” grid. The finest mesh uses 120 × 120 × 3 elements in

the radial, angular and x3 coordinate directions, respectively.

The boundary conditions consists of unit horizontal velocity u = (1, 0, 0)T along the

inflow boundary, zero pressure and zero normal derivatives of the velocities along the

outflow boundary, and zero velocity components at the wall of the cylinder.

7.3.2 Results

In this section we describe two Reynolds number cases, Re = 40 and Re = 200.

Consider first Re = 40, which is a standard test case to verify the numerical method.

For this Reynolds number we study the accuracy of the numerical method under

mesh refinement. In order to verify the spatial accuracy of the method, we consider

three meshes: 60× 60× 3, 85× 85× 3 and 120× 120× 3. Figures 7.27-7.29 show the

streamlines, vorticity and pressure contours at steady state on the finest mesh.

The length of the wake and the separation point can be used to study the accuracy

of the numerical method. The length of the wake behind the cylinder is obtained by

plotting the horizontal velocity along the centerline behind the cylinder, see Figure

7.30 for the three meshes considered in the computations. When comparing our

result on the finest mesh in Table 7.3 with the experimental data described in [10],

we observe a difference in the wake length of only 1.8%. In Figure 7.31 we plot the

wake length as a function of h2, where h is the average mesh size in the horizontal

direction. This plot shows a quadratic convergence, with a predicted wake length, as

h→ 0, equal to 2.25. Similarly, we plot in Figure 7.32 the computed drag coefficient

Figure 7.27: Streamlines for the circular cylinder at Re = 40 on a 120×120×3 mesh.
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Figure 7.28: Vorticity contours for the circular cylinder at Re = 40 on a 120×120×3

mesh.
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Figure 7.29: Pressure contours for the circular cylinder at Re = 40 on a 120× 120× 3

mesh.
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7.3. Flow past a circular cylinder

as a function of h2, where also a quadratic convergence is observed. Table 7.3 shows

that the separation point is also close to the one obtained from experiments.

The next test case we consider is Re = 200. At this Reynolds number vortex shedding

occurs and the Reynolds number is small enough that the boundary layers can be

resolved on the present mesh. Initially, a pair of symmetric eddies develops behind

the cylinder, reaching a steady state at about t = 50. Streamlines of this steady

solution are shown in Figure 7.33. In the computations to obtain an initial steady

solution, the basis functions are chosen to be linear-in-space and constant-in-time,

using a time step of 0.1.

After an initial steady solution was obtained, the time step was reduced to 0.02.

For another 200 time steps, a very small un-symmetry in the eddies was observed,

therefore, a small perturbation was added to begin the vortex shedding process. To

obtain a time accurate solution, the time step was further reduced to 0.01 and a

predictor multi-corrector method has been employed with only one iteration in each

time step (no corrector passes were performed). The resulting linear system was

solved iteratively with the BiCGStab solver. Since for time accuracy, it is important

to solve the linear system accurately, the tolerance of the solver was set to O(10−6).

No preconditioners were employed in the BiCGStab method.

In Figure 7.34 and 7.35, the vorticity contours and streamlines of the developing

0.5 1 1.5 2 2.4 2.6 2.7 3

0

x
1

u 1

60 mesh
85 mesh
120 mesh

Figure 7.30: Horizontal velocity along the centerline behind the cylinder on the finest

mesh, Re = 40.
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Wake length Separation point, θ

Experiment, [10] 2.13 53.50

Numerical simulations

120× 120 mesh 2.174 53.90

85 × 85 mesh 2.096 53.10

60 × 60 mesh 1.927 51.50

Table 7.3: Wake length and separation point in degrees, measured from the x1-axis

for the flow around the circular cylinder, Re = 40.
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Figure 7.31: Predicted wake length for the circular cylinder at Re = 40.
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Figure 7.32: Drag coefficient for the circular cylinder at Re = 40.

Figure 7.33: Streamlines for the initial steady solution for the flow around the circular

cylinder at t = 50, Re = 200.
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vortex street can be observed at time t = 70. We can further follow the streamlines

for times t = 100 and t = 110, in Figures 7.36 and 7.37, respectively. In Figures 7.38-

7.40 we plot these streamlines close to the cylinder wall, showing the detailed flow

structure near the cylinder, in particular the separation region. These simulations

show that the numerical discretization with the stabilization operators developed in

this thesis are well capable of capturing the von Karman vortex street behind the

cylinder.

7.4 Concluding remarks

In this chapter we verified our three dimensional finite element code for a variety of

numerical examples. We investigated the influence of the stabilization matrix on the

accuracy of the Galerkin least-squares finite element method for the incompressible

Navier-Stokes equations, when primitive variables are used. The main conclusion

is that the parameter ω in the newly designed stabilization matrix (4.3.13) does

not influence the spatial accuracy of the numerical discretization. We verified this

result also for higher order discretizations. The parameter ω does influence, however,

the convergence to steady state and improves the conditioning of the linear system,

resulting in a faster convergence for GMRES and BiCGStab solvers for ω = 0.6. For

the value ω = 0.6 we also obtained that the iterative solver to solve the linear system

(GMRES or BiCGStab) is more robust.

The finite element method has been demonstrated to capture the detailed flow struc-

tures for both the driven cavity and the flow about a circular cylinder. The stabi-
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Figure 7.34: Vorticity contours for the circular cylinder at t = 70, Re = 200.
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Figure 7.35: Streamlines for the circular cylinder at t = 70, Re = 200.

Figure 7.36: Streamlines for the circular cylinder at t = 100, Re = 200.
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Figure 7.37: Streamlines for the circular cylinder at t = 110, Re = 200.

Figure 7.38: Streamlines near the cylinder wall at t = 70, Re = 200.
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Figure 7.39: Streamlines near cylinder wall at t = 100, Re = 200.

Figure 7.40: Streamlines near the cylinder wall at t = 110, Re = 200.
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lization matrices developed in this thesis performed well in stabilizing the numerical

method without seriously degrading accuracy. Further investigations on deforming

meshes and for higher Reynolds numbers will be needed to demonstrate also the ef-

fectiveness for predicting the dynamic behavior of the cylinder due to periodic vortex

shedding.

We believe that a similar investigation is needed to verify the accuracy of the method

when entropy variables are used. Furthermore, we incorporated, but did not investi-

gate, the evolution of temperature field in the various test cases.
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Chapter 8

Conclusions and further research

In this chapter we give an overview of the most important results and conclusions of

this thesis. Furthermore, we indicate some directions for further research.

8.1 Conclusions

The goal of this research was to design and analyze stabilization matrices in a Galerkin

least-squares finite element method for the Navier-Stokes equations, suitable for a wide

spectrum of flow problems. To achieve this goal, we have employed the symmetric

form of the Navier-Stokes equations using entropy variables. This form gives the

possibility to study the incompressible limit of the equations.

The space-time Galerkin least-squares method was employed, which permits discrete

discontinuities in time and is suitable for problems requiring moving and deform-

ing meshes. This method has been successfully used for both compressible and in-

compressible flows. Having established the method for entropy variables, we may

transform it to any set of variables for which the incompressible limit is well-defined.

Using this advantage, we gave a consistent mathematical derivation of a class of sta-

bilization operators suitable for space-time Galerkin least-squares discretizations of

the incompressible Navier-Stokes equations for both entropy and primitive variables.

This derivation is based on a dimensional analysis of the stabilization matrix to de-

termine its dependence on the flow variables. Next, we analyzed the resulting class

of stabilization matrices such that we can ensure that the Galerkin least-squares fi-

nite element discretization results in a stable discretization technique, at least for the

locally linearized problem.

The Galerkin formulation of the symmetric compressible Navier-Stokes equations au-

tomatically satisfies the second law of thermodynamics. The Galerkin method applied
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to the compressible Navier-Stokes equations requires a stabilization operator to com-

pensate the lack of stability for advection dominated problems, while maintaining

the accuracy of the Galerkin method for smooth solutions. We have proposed a new

definition of stabilization operators for compressible flows without shocks, which has

certain advantages over the original definitions given in [32] and [50]. The new matrix

has a simple structure that is much easier to implement. Additionally, when the in-

compressible limit is taken, this matrix results in the stabilization matrix obtained for

incompressible flows, therefore provides a larger range of applicability. Furthermore,

we gave necessary and sufficient conditions on the positive definiteness of the designed

stabilization matrix for entropy variables. Under the condition of positive definiteness

of the stabilization matrix, the Galerkin least-squares method for the symmetrized

compressible Navier-Stokes equations satisfies the entropy condition, which results in

a nonlinear stability condition, as we discussed in detail in this thesis.

Since we are interested in the incompressible limit, it is necessary to study the various

thermodynamic limits. We proposed a general form of the fundamental equation, that

is valid in the incompressible limit. The main statement is that the thermodynamic

state of a single species material is determined by three measurable quantities, the

volume expansivity αp, the isothermal compressibility βT and the specific heat at

constant pressure cp (or specific heat at constant volume cv).

8.2 Further research

In the numerical examples discussed in this thesis we investigated the properties of the

newly designed stabilization operator for the incompressible Navier-Stokes equations

in terms of the primitive variables (p, u, T ). An important continuation of this research

consists of analyzing the influence of the stabilization operator for entropy variables

on the accuracy and robustness of the Galerkin least-squares method for incompress-

ible flows. Furthermore, for primitive variable computations, we did not discuss the

temperature equation, which would be of great interest for many applications.

The main objective of this thesis is to give a unified formulation of stabilization op-

erators valid for wide range of fluid flow applications. We analyzed the mathematical

properties of the proposed matrices for both types of flows but we did not verify their

performance for compressible flows. Therefore, this remains for future investigation.

The time-discontinuous Galerkin least-squares finite element discretization results in a

large system of nonlinear algebraic equations. The predictor multi-corrector algorithm

originating from the constant-in-time approximation of the Galerkin least-squares

variational equation has good stability properties but is of low order of accuracy in

time. This algorithm, introduced in [50], is well-suited for solving steady problems and

we have employed this method in our steady computations. For unsteady problems,

a linear-in-time approximation of the space-time Galerkin least-squares variational
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equation is needed. In [50], a predictor multi-corrector method is proposed to reduce

the resulting large algebraic system to two weakly coupled systems. This algorithm

employs the same left hand side matrix for both systems. In this thesis we proposed a

different method to solve the nonlinear algebraic system. We compared the algorithm

with the predictor multi-corrector method using the advection-diffusion equation as a

model problem. We concluded that the two methods have similar properties, further

investigation is, however needed. In this method we need to compute two matrices,

but our preliminary experience suggests that this can be a better solution technique for

incompressible flows. Further improvement of iterative methods to solve the resulting

linear system in a Newton method for incompressible flows is needed to obtain more

robust solvers.

In the finite element discretization of the incompressible Navier-Stokes equations, we

discussed some aspects of the mesh deformation, but did not yet implement them

in our computer program. The extension of this work to problems which require

deforming meshes, such as risers, would be very useful for many applications.

Further challenge would be to incorporate different equations of state in the formu-

lation. The general equation of state provides a good starting point towards this

challenge.
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Appendices

A Measurements

In Table A.1 we listed some measured values of αp and βT for water [57], at vari-

ous temperatures. Table A.2 shows some measured values of αp and βT for several

substances at 293 K, [38].

Temperature (K) αp (10−3 1/K) βT (10−6 1/bar)

243 -1.400 80.79

253 -0.661 64.25

263 -0.292 55.83

273 -0.068 50.89

283 0.088 47.81

293 0.207 45.89

303 0.303 44.77

313 0.385 44.24

323 0.458 44.17

333 0.523 44.50

343 0.584 45.16

353 0.641 46.14

363 0.696 47.43

373 0.750 49.02

Table A.1: Measured values for βT and αp over a range of temperatures for water.
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Substance αp (10−4 1/K) βT (10−6 1/atm)

Liquids

Benzene 12.4 92.1

Carbon tetrachloride 12.4 90.5

Ethanol 11.2 76.8

Mercury 1.82 38.7

Water 2.1 49.6

Solids

Copper 0.501 0.735

Diamond 0.030 0.187

Iron 0.354 0.589

Lead 0.861 2.21

Table A.2: Expansion coefficient αp and isothermal compressibility βT , measured at

293 K for several substances.

B Flux Jacobian matrices

B.1 Flux Jacobian matrices for entropy variables

The advective flux Jacobian matrices in terms of the entropy variables V have the

form:

Ã0 = ρ2βTT













1 u1 u2 u3 e2

u1 c1 u1u2 u1u3 u1e3

u2 u1u2 c2 u2u3 u2e3

u3 u1u3 u2u3 c3 u3e3

e2 u1e3 u2e3 u3e3 e5













Ã1 = ρ2βTT













u1 c1 u1u2 u1u3 u1e3

c1 a1 u2c1 u3c1 b1

u1u2 u2c1 u1c2 u1u2u3 u1u2e4

u1u3 u3c1 u1u2u3 u1c3 u1u3e4

u1e3 b1 u1u2e4 u1u3e4 d1












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Ã2 = ρ2βTT













u2 u1u2 c2 u2u3 u2e3

u1u2 u2c1 u1c2 u1u2u3 u1u2e4

c2 u1c2 a2 u3c2 b2

u2u3 u1u2u3 u3c2 u2c3 u2u3e4

u2e3 u1u2e4 b2 u2u3e4 d2













Ã3 = ρ2βTT













u3 u1u3 u2u3 c3 u3e3

u1u3 u3c1 u1u2u3 u1c3 u1u3e4

u2u3 u1u2u3 u3c2 u2c3 u2u3e4

c3 u1c3 u2c3 a3 b3

u3e3 u1u3e4 u2u3e4 b3 d3













where we used the following notations:

ai = ui(u
2
i +

3

ρβT
), ci = u2

i +
1

ρβT
,

k =
|u|2
2
, e1 = h+ k,

γ̄ =
αp

ρβT cv
, e2 = e1 − T γ̄cv,

e3 = e2 +
1

ρβT
, e4 = e2 +

2

ρβT
,

d =
αpT

ρβT
, e5 = e21 − 2e1d+

2k + cpT

ρβT
,

bi = u2
i e4 +

e1
ρβT

, di = ui(e5 +
2e1
ρβT

).

The viscous flux Jacobian matrices in terms of the entropy variables, which satisfy
the relation K̃ij = K̃T

ji, are given as:

K̃11 = T










0 0 0 0 0

0 4µ/3 0 0 4µu1/3

0 0 µ 0 µu2

0 0 0 µ µu3

0 4µu1/3 µu2 µu3 k1










K̃22 = T










0 0 0 0 0

0 µ 0 0 µu1

0 0 4µ/3 0 4µu2/3

0 0 0 µ µu3

0 µu1 4µu2/3 µu3 k2










K̃33 = T










0 0 0 0 0

0 µ 0 0 µu1

0 0 µ 0 µu2

0 0 0 4µ/3 4µu3/3

0 µu1 µu2 4µu3/3 k3










K̃12 = T










0 0 0 0 0

0 0 −2µ/3 0 −2µu2/3

0 µ 0 0 µu1

0 0 0 0 0

0 µu2 −2µu1/3 0 µu1u2/3









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K̃13 = T










0 0 0 0 0

0 0 0 −2µ/3 −2µu3/3

0 0 0 0 0

0 µ 0 0 µu1

0 µu3 0 −2µu1/3 µu1u3/3










K̃23 = T










0 0 0 0 0

0 0 0 0 0

0 0 0 −2µ/3 −2µu3/3

0 0 µ 0 µu2

0 0 µu3 −2µu2/3 µu2u3/3










where κ is the coefficient of thermal conductivity and ki = 1
3µu

2
i + µ|u|2 + κT for

i = 1, 2, 3.

The incompressible limit of the Navier-Stokes equations are obtained by setting αp

and βT equal to zero. The Jacobian matrices in the incompressible limit are given

by:

Ãinc
0 = ρT










0 0 0 0 0

0 1 0 0 u1

0 0 1 0 u2

0 0 0 1 u3

0 u1 u2 u3 r










Ãinc
1 = ρT










0 1 0 0 u1

1 3u1 u2 u3 2u2
1 + e1

0 u2 u1 0 2u1u2

0 u3 0 u1 2u1u3

u1 2u2
1 + e1 2u1u2 2u1u3 u1(r + 2e1)










Ãinc
2 = ρT










0 0 1 0 u2

0 u2 u1 0 2u1u2

1 u1 3u2 u3 2u2
2 + e1

0 0 u3 u2 2u2u3

u2 2u1u2 2u2
2 + e1 2u2u3 u2(r + 2e1)










Ãinc
3 = ρT










0 0 0 1 u3

0 u3 0 u1 2u1u3

0 0 u3 u2 2u2u3

1 u1 u2 3u3 2u2
3 + e1

u3 2u1u3 2u2u3 2u2
3 + e1 u3(r + 2e1)










with k = |u|2/2, r = 2k + cpT and e1 = h + k. Note that the viscous flux Jacobian

matrices K̃ij are independent of αp and βT and do not change in the incompressible

limit.
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B.2 Flux Jacobian matrices for primitive variables

The Euler Jacobian matrices with respect to the primitive variables Y = (p, u1, u2, u3, T )T

are:

A0(Y ) =













ρβT 0 0 0 −ραp

ρβTu1 ρ 0 0 −ραpu1

ρβTu2 0 ρ 0 −ραpu2

ρβTu3 0 0 ρ −ραpu3

ep
1 ρu1 ρu2 ρu3 ep

4













A1(Y ) =













ρβTu1 ρ 0 0 −ραpu1

ρβTu
2
1 + 1 2ρu1 0 0 −ραpu

2
1

ρβTu1u2 ρu2 ρu1 0 −ραpu1u2

ρβTu1u3 ρu3 0 ρu1 −ραpu1u3

u1e
p
2 ep

3 + ρu2
1 ρu1u2 ρu1u3 u1e

p
4













A2(Y ) =













ρβTu2 0 ρ 0 −ραpu2

ρβTu1u2 ρu2 ρu1 0 −ραpu1u2

ρβTu
2
2 + 1 0 2ρu2 0 −ραpu

2
2

ρβTu2u3 0 ρu3 ρu2 −ραpu2u3

u2e
p
2 ρu1u2 ep

3 + ρu2
2 ρu2u3 u2e

p
4













A3(Y ) =













ρβTu3 0 0 ρ −ραpu3

ρβTu1u3 ρu3 0 ρu1 −ραpu1u3

ρβTu2u3 0 ρu3 ρu2 −ραpu2u3

ρβTu
2
3 + 1 0 0 2ρu3 −ραpu

2
3

u3e
p
2 ρu1u3 ρu2u3 ep

3 + ρu2
3 u3e

p
4













where

ep
1 = ρβT e1 − αpT, ep

2 = ep
1 + 1, ep

3 = ρe1, ep
4 = −ραpe1 + ρcp.

The diffusivity coefficient matrices Kij(Y ), for i, j = 1, 2, 3 have the form:

K11(Y ) =










0 0 0 0 0

0 χ 0 0 0

0 0 µ 0 0

0 0 0 µ 0

0 χu1 µu2 µu3 κ










, K12(Y ) =










0 0 0 0 0

0 0 λ 0 0

0 µ 0 0 0

0 0 0 0 0

0 µu2 λu1 0 0









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K13(Y ) =










0 0 0 0 0

0 0 0 λ 0

0 0 0 0 0

0 µ 0 0 0

0 µu3 0 λu1 0










, K21(Y ) =










0 0 0 0 0

0 0 µ 0 0

0 λ 0 0 0

0 0 0 0 0

0 λu2 µu1 0 0










K22(Y ) =










0 0 0 0 0

0 µ 0 0 0

0 0 χ 0 0

0 0 0 µ 0

0 µu1 χu2 µu3 κ










, K23(Y ) =










0 0 0 0 0

0 0 0 0 0

0 0 0 λ 0

0 0 µ 0 0

0 0 µu3 λu2 0










K31(Y ) =










0 0 0 0 0

0 0 0 µ 0

0 0 0 0 0

0 λ 0 0 0

0 λu3 0 µu1 0










, K32(Y ) =










0 0 0 0 0

0 0 0 0 0

0 0 0 µ 0

0 0 λ 0 0

0 0 λu3 µu2 0










K33(Y ) =










0 0 0 0 0

0 µ 0 0 0

0 0 µ 0 0

0 0 0 χ 0

0 µu1 µu2 χu3 κ










,

where χ = λ+ 2µ.

B.3 Variable transformation matrices

The transformation matrix V,Y has the form

V,Y =














1
ρT −u1

T −u2

T −u3

T −h−k
T 2

0 1
T 0 0 − u1

T 2

0 0 1
T 0 − u2

T 2

0 0 0 1
T − u3

T 2

0 0 0 0 1
T 2













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where Y = (p, u1, u2, u3, T )T . The inverse matrix transformation is given by

Y,V =













ρT ρTu1 ρTu2 ρTu3 ρT (h+ k)

0 T 0 0 u1T

0 0 T 0 u2T

0 0 0 T u3T

0 0 0 0 T 2













.
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C The solution of the nonlinear system

C.1 Third-order predictor multi-corrector algorithm

The third-order predictor multi-corrector algorithm can be summarized as follows:

(Initialization)

Set v(0)

(Time steps)

for ntime = 0, . . . , nstep

(Predictor)

v(0) = ṽ(0) = v(n)

Set ∆t

(Multi-corrector loop)

for i = 0, . . . , imax

form R(i)(v(i), ṽ(i), v(n))

form M∗(v(i), ṽ(i))

solve for ∆v(i) :

M∗∆v(i) = −R(i)

update: v(i+1) = v(i) + ∆v(i)

if i = imax exit the loop

form R̃(i)(ṽ(i), v(i+1), v(n))

form M̃∗(v(i+1), ṽ(i))

solve for ∆ṽ(i) :

M̃∗∆ṽ(i) = −R̃(i)

update: ṽ(i+1) = ṽ(i) + ∆ṽ(i)

(end multi-corrector loop)

v(n+1) = v(i+1)

(end time steps)
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C.2 Modified predictor multi-corrector algorithm

The modification of the third-order predictor multi-corrector algorithm, proposed in

this thesis, can be summarized as follows:

(Initialization)

Set v(0)

(Time steps)

for ntime = 0, . . . , nstep

v(0) = ṽ(0) = v(n)

Set ∆t

for i = 0, . . . , imax

form R(i)(v̄(i),
4
v (i), v(n))

form R̃(i)(v̄(i),
4
v (i), v(n))

form M11(v̄
(i),

4
v (i))

form M22(v̄
(i),

4
v (i))

solve for ∆v̄(i) and ∆
4
v (i) :

2M11∆v̄
(i) = −R(i)

− 2M̃22∆
4
v (i) = −R̃(i)

update: v(i+1) = v(i) + ∆v̄(i) + ∆
4
v (i))

update: ṽ(i+1) = ṽ(i) + ∆v̄(i) − ∆
4
v (i)

(end of the i loop)

v(n+1) = v(i+1)

(end time steps)

181





Bibliography
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tion: A stable Petrov-Galerkin formulation of the Stokes problem accommodating

equal-order interpolations. Comput. Meth. Appl. Mech. Engrg, 59:85–99, 1986.

[29] T.J.R. Hughes, L.P. Franca, and G.M. Hulbert. A new finite element formulation

for computational fluid dynamics: VIII. The Galerkin/least-squares method for

advective-diffusive equations. Comput. Meth. Appl. Mech. Engrg, 73:173–189,

1989.

[30] T.J.R. Hughes, L.P. Franca, and M. Mallet. A new finite element formulation

for computational fluid dynamics: I. Symmetric forms of the compressible Euler

and Navier-Stokes equations and the second law of thermodynamics. Comput.

Meth. Appl. Mech. Engrg, 54:223–234, 1986.

[31] T.J.R. Hughes, L.P. Franca, and M. Mallet. A new finite element formulation for

computational fluid dynamics: VI. Convergence analysis of the generalized SUPG

formulation for linear time-dependent multidimensional advective-diffusive sys-

tems. Comput. Meth. Appl. Mech. Engrg, 63:97–112, 1987.

[32] T.J.R. Hughes and M. Mallet. A new finite element formulation for computa-

tional fluid dynamics: III. The generalized streamline operator for multidimen-

sional advective-diffusive systems. Comput. Meth. Appl. Mech. Engrg, 58:305–

328, 1986.

[33] T.J.R. Hughes and M. Mallet. A new finite element formulation for computa-

tional fluid dynamics: IV. A discontinuity-capturing operator for multidimen-

sional advective-diffusive systems. Comput. Meth. Appl. Mech. Engrg, 58:329–

336, 1986.

[34] T.J.R. Hughes, M. Mallet, and A. Mizukami. A new finite element formulation

for computational fluid dynamics: II. Beyond SUPG. Comput. Meth. Appl. Mech.

Engrg, 54:341–355, 1986.

[35] T.J.R. Hughes and T.E. Tezduyar. Finite element methods for first-order hy-

perbolic systems with particular emphasis on the compressible Euler equations.

Comput. Meth. Appl. Mech. and Eng., 45:217–284, 1984.

185



Bibliography

[36] G.M. Hulbert and T.J.R. Hughes. Space-time finite element methods for second

order hyperbolic equations. Comput. Meth. Appl. Mech. Engrg, 84:327–348, 1990.

[37] C. Johnson, A. Szepessy, and P. Hansbo. On the convergence of shock-capturing

streamline diffusion finite element methods for hyperbolic conservation laws.

Math. Comp., 54(189):107–129, 1990.

[38] E.W. Lemmon et al. Thermodynamic properties of air and mixtures of nitrogen,

argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa. J. Phys. Chem.

Ref. Data, 29(3):331–385, 2000.

[39] M. Marion and R. Temam. Navier-Stokes Equations: Theory and Approximation.

Elsevier Science, 1998.

[40] A. Masud and T.J.R. Hughes. A space-time Galerkin/least-squares finite ele-

ment formulation of the Navier-Stokes equations for moving domain problems.

Comput. Meth. Appl. Mech. and Eng., 146(1–2):91–126, 1997.

[41] R. Menikoff and J.P. Bradley. The Riemann problem for fluid flow of real mate-

rials. Reviews of modern physics, 61(1):75–130, 1989.

[42] S. Mittal and T.E. Tezduyar. A unified finite element formulation for compress-

ible and incompressible flows using augmented conservation variables. Comput.

Meth. Appl. Mech. and Eng., 161:229–243, 1998.

[43] M.S. Mock. System of conservation laws of mixed type. J. Diff. Eq., 37:70–88,

1980.

[44] R.L. Panton. Incompressible flow. Wiley-Interscience, 1984.

[45] M. Polner, L. Pesch, J.J.W. van der Vegt, and R.M.J. van Damme. A unified

formulation of stabilization operators for Galerkin least-squares discretizations.

Comput. Meth. Appl. Mech. Engrg, to be submitted.

[46] M. Polner, J.J.W. van der Vegt, and R.M.J. van Damme. Analysis of stabilization

operators for Galerkin least-squares discretizations of the incompressible Navier-

Stokes equations. Comput. Meth. Appl. Mech. Engrg, 2004.

[47] H. Schlichting. Boundary layer theory. Oxford Science Publications, 1998.

[48] Ch. Schwab. p- and hp- Finite element methods. Theory and applications in solid

and fluid mechanics. Oxford Science Publications, 1998.

[49] J.V. Sengers, R.F. Kayser, et al. Equations of state for fluids and fluid mixtures.

Elsevier, 2000.

[50] F. Shakib. Finite element analysis of the compressible Euler and Navier-Stokes

equations. PhD thesis, Stanford University, 1988.

186



Bibliography

[51] F. Shakib, T.J.R. Hughes, and Z. Johan. A new finite element formulation

for computational fluid dynamic: X. The compressible Euler and Navier-Stokes

equations. Comput. Meth. Appl. Mech. and Eng., 89:141–219, 1991.

[52] T.E. Tezduyar. Stabilized finite element formulations for incompressible flow

computations. Advances in applied mechanics, 28:1–44, 1992.

[53] T.E. Tezduyar and T.J.R. Hughes. Development of time-accurate finite element

techniques for first-order hyperbolic systems with particular emphasis on the

compressible Euler equations. NASA-Ames University Consortium Interchange,

report No. NCA2-OR745-104., 1982.

[54] E.F. Toro. Rieman solvers and numerical methods for fluid dynamics. Springer-

Verlag, Berlin Heidelberg, 1999.

[55] J.J.W. van der Vegt and H. van der Ven. Space-time discontinuous Galerkin

finite element method with dynamic grid motion for inviscid compressible flows.

I. General formulation. J. Comput. Phys., 182(2):546–585, 2002.

[56] H. van der Ven and J.J.W. van der Vegt. Space-time discontinuous Galerkin

finite element method with dynamic grid motion for inviscid compressible flows.

II. Efficient flux quadrature. Comput. Meth. Appl. Mech. Engrg, 191:4747–4780,

2002.

[57] W. Wagner and A. Prus. The IAPWS formulation 1995 for the thermodynamic

properties of ordinary water substance for general and scientific use. J. Phys.

Chem. Ref. Data, 31(2):387–535, 2002.

[58] J.S. Wong, D.L. Darmofal, and J. Peraire. The solution of the compressible

Euler equations at low Mach numbers using a stabilized finite element algorithm.

Comput. Meth. Appl. Mech. Engrg, 190:5719–5737, 2001.

187





Samenvatting

In dit proefschrift behandelen wij problemen uit de stromingsmechanica vanuit een al-

gemeen uitgangspunt en combineren wij technieken die oorspronkelijk zijn ontwikkeld

voor compressibele en incompressibele stromingen in een algemener kader. Om de

toepasbaarheid van een generieke aanpak te bestuderen is het nodig om een goede

initiële formulering te kiezen. En daarmee is ook de keuze van de variabelen in de

beschrijvende vergelijkingen van cruciaal belang. Zo zijn bijvoorbeeld conservatieve

variabelen niet geschikt voor een generieke formulering omdat ze een singuliere limiet

voor incompressibele stromingen als resultaat hebben. Wanneer entropievariabelen of

de zogenaamde primitieve variabelen worden gebruikt dan is de incompressibele limiet

van de Navier-Stokes vergelijkingen wel correct gedefinieerd, waardoor deze variabe-

len geschikt zijn om als uitgangspunt van een generieke formulering te fungeren. De

formulering van de Navier-Stokes vergelijkingen in termen van deze variabelen wordt

daarom in dit proefschrift in detail bestudeerd.

Aangezien elke groep van variabelen unieke karaktereigenschappen bezit zijn de nauw-

keurigheid, stabiliteit, robuustheid en efficiëntie van berekeningen met de numerieke

methode sterk afhankelijk van deze keuze.

De numerieke discretisatie, die we onderzoeken, is een tijdsdiscontinue Galerkin klein-

ste-kwadraten eindige elementen methode. Een essentieel onderdeel van deze en gere-

lateerde methoden is de stabilisatieoperator. In het algemeen is voor compressibele

stromingen een stabilisatieoperator nodig om numerieke oscillaties in gebieden met

discontinüıteiten of scherpe gradiënten, die niet nauwkeurig kunnen worden gerepre-

senteerd op het rekenrooster, te voorkomen. Voor incompressibile stromingen is de

stabilisatieoperator ook cruciaal, omdat het in dat geval niet nodig is om elementen

te ontwerpen, die aan de inf-sup stabiliteitsconditie voldoen. Ondanks dat er zeer

verschillende redenen zijn om een stabilisatieoperator te gebruiken bij het oplossen

van compressibele en incompressibele stromingen, toont dit proefschrift aan dat veel

ideeën die zijn ontwikkeld in het ene veld ook toegepast kunnen worden in het andere

veld.

Het belangrijkste ingrediënt om een generieke formulering te verkrijgen is de bepaling

van een stabilisatiematrix die voor beide typen stromingen gebruikt kan worden. De
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keuze van deze matrix is cruciaal om de stabiliteit van de numerieke discretisatie te

verzekeren zonder de nauwkeurigheid in essentie aan te tasten. Bovendien zou de sta-

bilisatiematrix die voor de incompressibele stromingen is ontwikkeld niet effectief kun-

nen zijn voor compressibele stromingen, maar ook andersom: de compressibele stabili-

satiematrix zou niet correct gedefinieerd kunnen zijn in de incompressibele limiet. Dit

proefschrift beschrijft een nieuwe techniek om stabilisatiematrices te ontwikkelen die

gebruikt kunnen worden voor beide typen stromingen. De voorgestelde klasse van sta-

bilisatiematrices is verkregen door middel van dimensieanalyse van de stromingsvari-

abelen. Bij de ontwikkeling van de stabilisatiematrices hebben we gebruik gemaakt

van de voordelen van de entropievariabelen en de primitieve variabelen. De verkregen

stabilisatiematrices zijn correct gedefinieerd in de incompressibele limiet van zowel de

entropievariabelen als de primitieve variabelen. Dit beschouwen we als het belang-

rijkste resultaat van dit onderzoek. De voorgestelde klasse van stabilisatiematrices

met de correcte dimensies wordt verder onderzocht om de stabiliteit van de Galerkin

kleinste-kwadraten eindige elementen discretisatie van de gelinearizeerde incompres-

sibele Navier-Stokes vergelijkingen en de niet-lineaire stabiliteit in het compressibele

geval te verbeteren. Daarvoor geven we noodzakelijke en voldoende condities voor het

positief-definiet zijn van de ontwikkelde stabilisatiematrix voor de entropievariabelen.

De tijdsdiscontinue Galerkin kleinste-kwadraten eindige elementen discretisatie re-

sulteert in een groot systeem van niet-lineaire algebräısche vergelijkingen. Een be-

nadering van de ruimte-tijd Galerkin kleinste-kwadraten variationele vergelijking, die

lineair is in de tijd, is nodig voor het oplossen van niet-stationaire problemen. In

dit proefschrift stellen wij een nieuwe methode voor om het niet-lineaire algebräısche

systeem op te lossen en vergelijken wij het algoritme met een predictor multi-corrector-

methode, waarbij gebruik gemaakt wordt van de advectie-diffusie vergelijking als mo-

delprobleem.

De ontwikkelde stabilisatiematrix wordt met een aantal numerieke voorbeelden gede-

monstreerd. De nadruk ligt hierbij op de invloed van de matrix op de nauwkeurigheid

van de numerieke discretisatie. De numerieke voorbeelden tonen dat de nieuwe sta-

bilisatiematrix goede resultaten geeft in het stabiliseren van de numerieke methode

zonder de nauwkeurigheid aan te tasten als er primitieve variabelen worden gebruikt.
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